Связанные понятия
Поиск в ширину (англ. breadth-first search, BFS) — метод обхода графа и поиска пути в графе. Поиск в ширину является одним из неинформированных алгоритмов поиска.
Вероятностный алгоритм — алгоритм, предусматривающий обращение на определённых этапах своей работы к генератору случайных чисел с целью получения экономии во времени работы за счёт замены абсолютной достоверности результата достоверностью с некоторой вероятностью.
Задача о покрытии множества является классическим вопросом информатики и теории сложности. Данная задача обобщает NP-полную задачу о вершинном покрытии (и потому является NP-сложной). Несмотря на то, что задача о вершинном покрытии сходна с данной, подход, использованный в приближённом алгоритме, здесь не работает. Вместо этого мы рассмотрим жадный алгоритм. Даваемое им решение будет хуже оптимального в логарифмическое число раз. С ростом размера задачи качество решения ухудшается, но всё же довольно...
Вероятностный метод — неконструктивный метод доказательства существования математического объекта с заданными свойствами. В основном используется в комбинаторике, но также и в теории чисел, линейной алгебре и математическом анализе, а также в информатике (например, метод вероятностного округления) и теории информации.
Минимальное остовное дерево (или минимальное покрывающее дерево) в связанном взвешенном неориентированном графе — это остовное дерево этого графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер.
Задача коммивояжёра (англ. Travelling salesman problem, сокращённо TSP) — одна из самых известных задач комбинаторной оптимизации, заключающаяся в поиске самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута (кратчайший, самый дешёвый, совокупный критерий и тому подобное) и соответствующие матрицы расстояний, стоимости и тому подобного. Как правило, указывается, что...
В информатике временна́я сложность алгоритма определяет время работы, используемое алгоритмом, как функции от длины строки, представляющей входные данные . Временная сложность алгоритма обычно выражается с использованием нотации «O» большое, которая исключает коэффициенты и члены меньшего порядка. Если сложность выражена таким способом, говорят об асимптотическом описании временной сложности, т.е. при стремлении размера входа к бесконечности. Например, если время, которое нужно алгоритму для выполнения...
Подробнее: Временная сложность алгоритма
В исследовании операций под аппроксимационным алгоритмом понимается алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.
Подробнее: Аппроксимационный алгоритм
Задача поиска изоморфного подграфа — это вычислительная задача, в которой входом являются два графа G и H и нужно определить, не содержит ли G подграф, изоморфный графу H.
Динамическое программирование в теории управления и теории вычислительных систем — способ решения сложных задач путём разбиения их на более простые подзадачи. Он применим к задачам с оптимальной подструктурой, выглядящим как набор перекрывающихся подзадач, сложность которых чуть меньше исходной. В этом случае время вычислений, по сравнению с «наивными» методами, можно значительно сократить.
Жадная раскраска в теории графов — раскраска вершин неориентированного графа, созданная жадным алгоритмом, который проходит вершины графа в некоторой предопределённой последовательности и назначает каждой вершине первый доступный цвет. Жадные алгоритмы, в общем случае, не дают минимально возможное число цветов, однако они используются в математике в качестве техники доказательств других результатов, относящихся к раскраске, а также в компьютерных программах для получения раскраски с небольшим числом...
Задача о вершинном покрытии — NP-полная задача информатики в области теории графов. Часто используется в теории сложности для доказательства NP-полноты более сложных задач.
Зада́ча о кратча́йшем пути ́ — задача поиска самого короткого пути (цепи) между двумя точками (вершинами) на графе, в которой минимизируется сумма весов рёбер, составляющих путь.
Остовное дерево графа состоит из минимального подмножества рёбер графа, таких, что из любой вершины графа можно попасть в любую другую вершину, двигаясь по этим рёбрам.
Задача разбиения множества чисел — это задача определения, можно ли данное мультимножество S положительных целых чисел разбить на два подмножества S1 и S2, таких, что сумма чисел из S1 равна сумме чисел из S2. Хотя задача разбиения чисел является NP-полной, существует решение псевдополиномиального времени методом динамического программирования существуют эвристические алгоритмы решения для многих конкрентных задач либо оптимально, либо приближённо. По этой причине задачу называют "простейшей NP-трудной...
Поиск в глубину (англ. Depth-first search, DFS) — один из методов обхода графа. Стратегия поиска в глубину, как и следует из названия, состоит в том, чтобы идти «вглубь» графа, насколько это возможно. Алгоритм поиска описывается рекурсивно: перебираем все исходящие из рассматриваемой вершины рёбра. Если ребро ведёт в вершину, которая не была рассмотрена ранее, то запускаем алгоритм от этой нерассмотренной вершины, а после возвращаемся и продолжаем перебирать рёбра. Возврат происходит в том случае...
Задача о самом широком пути — это задача нахождения пути между двумя выбранными вершинами во взвешенном графе, максимизирующего вес минимального по весу ребра графа (если рассматривать вес ребра как ширину дороги, то задача стоит в выборе самой широкой дороги, связывающей две вершины). Задача о самом широком пути известна также как задача об узком месте или задача о пути с максимальной пропускной способностью. Можно приспособить алгоритмы кратчайшего пути для вычисления пропускной способности путём...
Максимальный разрез графа — это разрез, размер которого не меньше размера любого другого разреза. Задача определения максимального разреза для графа известна как задача о максимальном разрезе.
В теории графов
глубина дерева связного неориентированного графа G — это числовой инвариант G, минимальная высота дерева Тремо для суперграфа графа G. Этот инвариант и близкие понятия встречаются под различными именами в литературе, включая число ранжирования вершин, упорядоченное хроматическое число и минимальная высота исключения дерева. Понятие близко также к таким понятиям, как циклический ранг ориентированных графов и высота итерации языка регулярных языков ; . Интуитивно, если древесная ширина...
Алгоритм Гельфонда — Шенкса (англ. Baby-step giant-step; также называемый алгоритмом больших и малых шагов) — в теории групп детерминированный алгоритм дискретного логарифмирования в мульпликативной группе кольца вычетов по модулю простого числа. Был предложен советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году.
Гомоморфизм графов — это отображение между двумя графами, не нарушающее структуру. Более конкретно, это отображение между набором вершин двух графов, которое отображает смежные вершины в смежные.
Задача о клике относится к классу NP-полных задач в области теории графов. Впервые она была сформулирована в 1972 году Ричардом Карпом.
Не путать с «симплекс-методом» — методом оптимизации произвольной функции. См. Метод Нелдера — МидаСимплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.
Подробнее: Симплекс-метод
Топологическая сортировка — упорядочивание вершин бесконтурного ориентированного графа согласно частичному порядку, заданному ребрами орграфа на множестве его вершин.
Задача о гамильтоновом пути и задача о гамильтоновом цикле — это задачи определения, существует ли гамильтонов путь (путь в неориентированном или ориентированном графе, который проходит все вершины графа ровно один раз) или гамильтонов цикл в заданном графе (ориентированном или неориентированном). Обе задачи NP-полны.
Дробная раскраска — это тема молодой области теории графов, известной как теория дробных графов. Дробная раскраска является обобщением обычной раскраски. В традиционной раскраске графа каждой вершине назначается некий цвет, и смежным вершинам — тем, что связаны рёбрами, — должны быть назначены разные цвета. В дробной раскраске каждой вершине назначается набор цветов.
Лемма регулярности Семереди — лемма из общей теории графов, утверждающая, что вершины любого достаточно большого графа можно разбить на конечное число групп таких, что почти во всех двудольных графах, соединяющих вершины из двух разных групп, рёбра распределены между вершинами почти равномерно. При этом минимальное требуемое количество групп, на которые нужно разбить множество вершин графа, может быть сколь угодно большим, но количество групп в разбиении всегда ограничено сверху.
Задача о самом длинном пути — это задача поиска простого пути максимальной длины в заданном графе. Путь называется простым, если в нём нет повторных вершин. Длина пути может быть измерена либо числом рёбер, либо (в случае взвешенных графов) суммой весов его рёбер. В отличие от задачи кратчайшего пути, которая может быть решена за полиномиальное время на графах без циклов с отрицательным весом, задача нахождения самого длинного пути является NP-трудной и не может быть решена за полиномиальное время...
Задача проверки планарности — это алгоритмическая задача проверки, является ли данный граф планарным (то есть, может ли он быть нарисован на плоскости без пересечения рёбер). Задача хорошо изучена в информатике и для неё было придумано много практических алгоритмов, многие из которых используют современные структуры данных. Большинство этих методов работают за время O(n) (линейное время), где n — число рёбер (или вершин) графа, что является асимптотически оптимальным алгоритмом. Вместо простого булевского...
В теории чисел гладким числом называется целое число, все простые делители которого малы.
Подробнее: Гладкое число
В математике случайный граф — это общий термин для обозначения вероятностного распределения графов. Случайные графы можно описать просто распределением вероятности или случайным процессом, создающим эти графы. Теория случайных графов находится на стыке теории графов и теории вероятностей. С математической точки зрения случайные графы необходимы для ответа на вопрос о свойствах типичных графов. Случайные графы нашли практическое применение во всех областях, где нужно смоделировать сложные сети — известно...
Путь в графе — последовательность вершин, в которой каждая вершина соединена со следующей ребром.
Разделяй и властвуй (англ. divide and conquer) в информатике — важная парадигма разработки алгоритмов, заключающаяся в рекурсивном разбиении решаемой задачи на две или более подзадачи того же типа, но меньшего размера, и комбинировании их решений для получения ответа к исходной задаче; разбиения выполняются до тех пор, пока все подзадачи не окажутся элементарными.
Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется...
Орграф называется сильно связным (англ. strongly connected), если любые две его вершины сильно связны. Две вершины s и t любого графа сильно связны, если существует ориентированный путь из s в t и ориентированный путь из t в s.
Подробнее: Компонента сильной связности в орграфе
Алгоритм распространения доверия (англ. belief propagation, также алгоритм «sum-product») — алгоритм маргинализации с помощью двунаправленной передачи сообщений на графе, применяемый для вывода на графических вероятностных моделях (таких как байесовские и марковские сети). Предложен Дж. Перлом в 1982 году.
Направленный ациклический граф (ориентированный ациклический граф, DAG от англ. directed acyclic graph) — орграф, в котором отсутствуют направленные циклы, но могут быть «параллельные» пути, выходящие из одного узла и разными путями приходящие в конечный узел. Направленный ациклический граф является обобщением дерева (точнее, их объединения — леса).
Факторизация целых чисел для больших чисел является задачей большой сложности. Не существует никакого известного способа, чтобы решить эту задачу быстро. Её сложность лежит в основе некоторых алгоритмов шифрования с открытым ключом, таких как RSA.
Целочисленное программирование является NP-трудной задачей. Специальный случай, 0-1 целочисленное линейное программирование, в которой переменные принимают значения 0 или 1, является одной из 21 NP-полных задач Карпа.
Комбинаторная оптимизация — область теории оптимизации в прикладной математике, связанная с исследованием операций, теорией алгоритмов и теорией вычислительной сложности.
Хроматический многочлен — многочлен, изучаемый в алгебраической теории графов. Многочлен считает число раскрасок графа как функции от числа цветов. Многочлен первоначально определил Джордж Дейвид Биркгоф в попытке атаки на проблему четырёх красок. Многочлен обобщили Х. Уитни и У. Т. Тат до многочлена Тата, связав его с моделью Поттса статистической физики.
Разбие́ние мно́жества — это представление его в виде объединения произвольного количества попарно непересекающихся подмножеств.
В теории графов
доминирующее множество для графа G = (V, E) — это подмножество D множества вершин V, такое, что любая вершина не из D смежна хотя бы одному элементу из D. Число доминирования γ(G) — это число вершин в минимальном доминирующем множестве G.
Детерминированный алгоритм — алгоритмический процесс, который выдаёт уникальный и предопределённый результат для заданных входных данных.
Двоичный (бинарный) поиск (также известен как метод деления пополам и дихотомия) — классический алгоритм поиска элемента в отсортированном массиве (векторе), использующий дробление массива на половины. Используется в информатике, вычислительной математике и математическом программировании.
Мультимножество в математике — обобщение понятия множества, допускающее включение одного и того же элемента по нескольку раз. Число элементов в мультимножестве, с учётом повторяющихся элементов, называется его размером или мощностью.
В комбинаторной оптимизации под линейной задачей о назначениях на узкие места (linear bottleneck assignment problem, LBAP) понимается задача, похожая на задачу о назначениях.
Подробнее: Линейная задача о назначениях в узких местах