Связанные понятия
В теории графов древесная декомпозиция — это отображение графа в дерево, которое может быть использовано для определения древесной ширины графа и ускорения решения определённых вычислительных задач на графах.
В теории графов
число Хадвигера неориентированного графа G — это размер наибольшего полного графа, который может быть получен стягиванием рёбер графа G.
Вырожденность известна также под именем k-ядерное число, ширина и зацепление, и, по существу, это то же самое, что и число раскраски или число Секереша — Вилфа. k-Вырожденные графы называются также k-индуктивными графами. Вырожденность графа может быть вычислена за линейное время с помощью алгоритма, который последовательно удаляет вершины с минимальной степенью. Компонента связности, оставшаяся после удаления всех вершин со степенью , меньшей k, называется k-ядром графа, и вырожденность графа равна...
Степень графа не следует путать с умножением графа на себя, который (в отличие от степени графа), в общем случае, имеет много больше вершин, чем исходный граф.
Дерево Тремо неориентированного графа G — это остовное дерево графа G с выделенным корнем со свойством, что любые две смежные вершины в графе G связаны друг с другом отношением предок/потомок. Все деревья поиска в глубину и все гамильтоновы пути являются деревьями Тремо.
Упоминания в литературе
В этом параграфе мы обсудим два
момента: как увеличить глубину дерева перебора и как без полного перебора обнаружить комбинационный удар. Начнем с метода, позволяющего более глубоко копнуть дерево перебора. Заметим, для начала, что более глубокое дерево без увеличения вычислительных ресурсов возможно только за счет отсечения некоторых его не очень значимых ветвей. Только это дает возможность другие, более важные ветки просмотреть глубже. А процедура отсечения ветки нуждается в критерии, позволяющем оценить ветвь игры до ее анализа.
Связанные понятия (продолжение)
Остовное дерево графа состоит из минимального подмножества рёбер графа, таких, что из любой вершины графа можно попасть в любую другую вершину, двигаясь по этим рёбрам.
Задача о вершинном покрытии — NP-полная задача информатики в области теории графов. Часто используется в теории сложности для доказательства NP-полноты более сложных задач.
Восходящее планарное представление направленного ациклического графа — это вложение графа в евклидово пространство, в котором рёбра представлены как непересекающиеся монотонно возрастающие кривые. То есть, кривая, представляющая любое ребро, должна иметь свойство, что любая горизонтальная прямая пересекает его максимум в одной точке, и никакие два ребра не могут пересекаться, разве что на концах. В этом смысле это идеальный случай для послойного рисования графа, стиля представления графа, в котором...
В теории графов рёберным графом L(G) неориентированного графа G называется граф L(G), представляющий соседство рёбер графа G.
Подробнее: Рёберный граф
В теории графов
доминирующее множество для графа G = (V, E) — это подмножество D множества вершин V, такое, что любая вершина не из D смежна хотя бы одному элементу из D. Число доминирования γ(G) — это число вершин в минимальном доминирующем множестве G.
Орграф называется сильно связным (англ. strongly connected), если любые две его вершины сильно связны. Две вершины s и t любого графа сильно связны, если существует ориентированный путь из s в t и ориентированный путь из t в s.
Подробнее: Компонента сильной связности в орграфе
Периферийный цикл в неориентированном графе является, интуитивно, циклом, который не отделяет любую часть графа от любой другой части. Периферийные циклы (или, как они сначала назывались, периферийные многоугольники, поскольку Тат называл циклы «многоугольниками»), первым изучал Тат и они играют важную роль в описании планарных графов и в образовании циклических пространств непланарных графов.
Порождённый подграф графа — это другой граф, образованный из подмножества вершин графа вместе со всеми рёбрами, соединяющими пары вершин из этого подмножества.
Окрестность часто обозначается как NG(v) или (если известно, о каком графе идёт речь) N(v). То же самое обозначение окрестности может использоваться для ссылки на множество смежных вершин, а не на соответствующий порождённый подграф. Окрестность, описанная выше, не включает саму вершину v и об этой окрестности говорят как об открытой окрестности вершины v. Можно определить окрестность, включающую v. В этом случае окрестность называется закрытой и обозначается как NG. Если не указано явно, окрестность...
Древесность неориентированного графа — это минимальное число лесов, на которые можно разложить рёбра. Эквивалентно это является минимальным числом остовных деревьев, которые необходимы для покрытия рёбер графа.
Число пересечений графа — наименьшее число элементов в представлении данного графа как графа пересечений конечных множеств, или, эквивалентно, наименьшее число клик, необходимых для покрытия всех рёбер графа.
Задача о клике относится к классу NP-полных задач в области теории графов. Впервые она была сформулирована в 1972 году Ричардом Карпом.
Задача о гамильтоновом пути и задача о гамильтоновом цикле — это задачи определения, существует ли гамильтонов путь (путь в неориентированном или ориентированном графе, который проходит все вершины графа ровно один раз) или гамильтонов цикл в заданном графе (ориентированном или неориентированном). Обе задачи NP-полны.
Косое разбиение графа — это разбиение его вершин на два подмножества, такое что порождённый подграф, образованный одним из его подмножеств вершин является несвязным, а другой порождённый подграф, образованный другим подмножеством является дополнением несвязного графа. Косые разбиения играют важную роль в теории совершенных графов.
Связный граф — граф, содержащий ровно одну компоненту связности. Это означает, что между любой парой вершин этого графа существует как минимум один путь. Другими словами, нет изолированной вершины ( такой, которая не имеет соответствующих ей рёбер (называется "ребра, инцидентные вершине 1" (или 2) ).
В теории графов короной с 2n вершинами называется неориентированный граф с двумя наборами вершин ui и vi и рёбрами между ui и vj, если i ≠ j. Можно рассматривать корону как полный двудольный граф, из которого удалено совершенное паросочетание, как двойное покрытие двудольным графом полного графа, или как двудольный граф Кнезера Hn,1, представляющий подмножества из 1 элемента и (n − 1) элементов множества из n элементов с рёбрами между двумя подмножествами, если одно подмножество содержится в другом...
Подробнее: Корона (теория графов)
Здесь собраны определения терминов из теории графов. Курсивом выделены ссылки на термины в этом словаре (на этой странице).
Подробнее: Глоссарий теории графов
В теории графов циркулянтным графом называется неориентированный граф, имеющий циклическую группу симметрий, которая включает симметрию, переводящую любую вершину в любую другую вершину.
Подробнее: Циркулянтный граф
Путь в графе — последовательность вершин, в которой каждая вершина соединена со следующей ребром.
Характеризация запрещёнными графами — это метод описания семейства графов или гиперграфов путём указания подструктур, которым запрещено появляться внутри любого графа в семействе.
В теории графов графом без клешней называется граф, который не содержит порождённых подграфов, изоморфных K1,3 (клешней).
Подробнее: Граф без клешней
Мост — ребро в теории графов, удаление которого увеличивает число компонент связности. Такие рёбра также известны как разрезающие рёбра, разрезающие дуги или перешейки. Эквивалентное определение — ребро является мостом в том и только в том случае, если оно не содержится ни в одном цикле.
В теории графов параллельно-последовательные графы — это графы с двумя различными вершинами, которые называются терминальными, образованные рекурсивно с помощью двух простых операций. Эти графы могут быть использованы для моделирования последовательного и параллельного соединения электрических цепей.
Подробнее: Параллельно-последовательный граф
Рёберный граф гиперграфа — это граф, множество вершин которого является множеством гиперрёбер гиперграфа, а два гиперребра смежны, если они имеют непустое пересечение. Другими словами, рёберный граф гиперграфа — это граф пересечений семейства конечных множеств. Понятие является обобщением рёберного графа обычного графа.
Модульное разложение — это разложение графа на подмножества вершин, называемых модулями. Модуль является обобщением компоненты связности графа. В отличие от компонент связности, однако, один модуль может быть собственным подмножеством другого. Модули, поэтому, ведут к рекурсивной (иерархической) декомпозиции графа, а не просто к разбиениям.
В теории графов декомпозиция на ветви неориентированного графа G — это иерархическая кластеризация рёбер графа G, представленная некорневым бинарным деревом T с рёбрами из G в качестве листьев. Удаление любого ребра из T делит рёбра графа G на два подграфа, а шириной декомпозиции считается максимальное число общих вершин в любом подграфе, полученным таким образом.
В теории графов толщина графа G — это наименьшее число плоских подграфов, на которые можно разложить рёбра графа G. То есть, если существует набор k плоских графов, имеющих одинаковый набор вершин, объединение которых даёт граф G, то толщина графа G не больше k.
Индифферентный граф — это неориентированный граф, построенный путём назначения вещественного числа каждой вершине и соединения двух вершин ребром, когда их числа отличаются не более чем на единицу. Индифферентные графы являются также графами пересечений множеств единичных отрезков или интервалов с определённым свойством вложения (никакой интервал не содержит какой-либо другой). Основываясь на этих двух типах интервальных представлений, эти графы называются также графами единичных отрезков или собственными...
В теории графов графом гиперкуба Qn называется регулярный граф с 2n вершинами, 2n−1n рёбрами и n рёбрами, сходящимися в одной вершине. Его можно получить как одномерный скелет геометрического гиперкуба. Например, Q3 — это граф, образованный 8 вершинами и 12 рёбрами трёхмерного куба. Граф можно получить другим образом, отталкиваясь от семейства подмножеств множества с n элементами путём использования в качестве вершин все подмножества и соединением двух вершин ребром, если соответствующие множества...
Подробнее: Граф гиперкуба
Древесная ширина часто используется в качестве параметра в анализе параметрической сложности алгоритмов на графах. Графы с шириной дерева, не превосходящей k, называются частичными k-деревьями. Многие другие хорошо изученные семейства графов также имеют ограниченную ширину дерева.
Ориентация неориентированного графа — это назначение направлений каждому ребру, что превращает исходный граф в ориентированный граф.
В теории графов неориентированный граф H называется минором графа G, если H может быть образован из G удалением рёбер и вершин и стягиванием рёбер.
Подробнее: Минор графа
Кососимметрический граф — это ориентированный граф, который изоморфен своему собственному транспонированному графу, графу, образованному путём обращения всех дуг, с изоморфизмом, который является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
В теории графов outerplanar graph — это граф, допускающий планарную диаграмму, в которой все вершины принадлежат внешней грани.
Подробнее: Внешнепланарный граф
В теории графов стягивание ребра — это операция, которая удаляет ребро из графа, а до этого связанные ребром вершины сливаются в одну вершину. Стягивание ребра является фундаментальной операцией в теории о минорах графов. Отождествление вершин — другая форма этой операции с более слабыми ограничениями.
В теории графов граф перестановки — это граф, вершины которого соответствуют элементам перестановки, а рёбра представляют пары элементов, следование которых стало обратным после перестановки. Графы перестановки можно определить геометрически как графы пересечений отрезков, концы которых лежат на двух параллельных прямых. Различные перестановки могут дать один и тот же граф перестановки. Заданный граф имеет единственное представление (с точностью до симметрии) если он является простым с точки зрения...
Теорема Брукса — утверждение в теории графов, устанавливающее связь между максимальной степенью графа и его хроматическим числом. Согласно этой теореме вершины связного графа, в котором все вершины имеют не больше Δ соседей, можно раскрасить всего в Δ цветов, за исключением двух случаев — полных графов и циклов нечётной длины, для которых требуется Δ + 1 цветов.
Планарное накрытие конечного графа G — это конечный накрывающий граф графа G, являющийся планарным графом. Любой граф, который может быть вложен в проективную плоскость, имеет планарное накрытие. Нерешённая гипотеза Сэйи Негами утверждает, что только эти графы и имеют планарные накрытия.
В теории графов пороговый граф — это граф, который может быть построен из одновершинного графа последовательным выполнением следующих двух операций...
В теории графов порождённым путём в неориентированном графе G называется путь, являющийся порождённым подграфом G. Таким образом, это последовательность вершин в G такая, что любые две смежные вершины в последовательности соединены ребром в G, и любые две несмежные вершины последовательности не соединены ребром G. Порождённый путь иногда называют змеёй и задача поиска самого длинного порождённого пути в графах гиперкубов известна как задача о змее в коробке.
Подробнее: Порождённый путь
Задача о самом длинном пути — это задача поиска простого пути максимальной длины в заданном графе. Путь называется простым, если в нём нет повторных вершин. Длина пути может быть измерена либо числом рёбер, либо (в случае взвешенных графов) суммой весов его рёбер. В отличие от задачи кратчайшего пути, которая может быть решена за полиномиальное время на графах без циклов с отрицательным весом, задача нахождения самого длинного пути является NP-трудной и не может быть решена за полиномиальное время...
В теории графов
укрытие — это определённый тип функции на множествах вершин неориентированного графа. Если укрытие существует, его может использовать беглец, чтобы выиграть игру преследование-уклонение на графе путём использования этой функции на каждом шаге игры для определения безопасных множеств вершин, куда можно перейти. Укрытия были впервые введены Сеймуром и Томасом как средство характеризации древесной ширины графов. Другие приложения этого понятия — доказательство существования малых сепараторов...
В теории графов круговой граф — это граф пересечений множества хорд окружности. То есть это неориентированный граф, вершины которого можно отождествить с хордами окружности, и эти вершины смежны тогда и только тогда, когда соответствующие хорды пересекаются.
Граф решётки — это граф, рисунок которого, вложенный в некоторое евклидово пространство Rn, образует регулярную мозаику. Это подразумевает, что группа биективных преобразований, переводящая граф в себя, является решёткой в теоретико-групповом смысле.
Подробнее: Решётка (теория графов)