Дифференциальное исчисление

  • Дифференциальное исчисление — раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций. Формирование дифференциального исчисления связано с именами Исаака Ньютона и Готфрида Лейбница. Именно они чётко сформировали основные положения и указали на взаимообратный характер дифференцирования и интегрирования. Создание дифференциального исчисления (вместе с интегральным) открыло новую эпоху в развитии математики. С этим связаны такие дисциплины как теория рядов, теория дифференциальных уравнений и многие другие. Методы математического анализа нашли применение во всех разделах математики. Очень распространилась область применения математики в естественных науках и технике.

    Дифференциальное исчисление базируется на таких важнейших понятиях математики, определение и исследование которых и составляют предмет введения в математического анализа: действительные числа (числовая прямая), функция, граница, непрерывность. Все эти понятия получили современную трактовку в ходе развития и обоснования дифференциального и интегрального исчислений.

    Основная идея дифференциального исчисления состоит в изучении функции в малом. Точнее дифференциальное исчисление дает аппарат для исследования функций, поведение которых в достаточно малой окрестности каждой точки близка к поведению линейной функции или многочлена. Таким аппаратом служат центральные понятия дифференциального исчисления: производная и дифференциал.

Источник: Википедия

Связанные понятия

Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Обобщённая фу́нкция или распределе́ние — математическое понятие, обобщающее классическое понятие функции.
Многомерный анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.

Упоминания в литературе

Что же это за новая геометрическая метафизика? Речь идет о введении неких новых постулатов в геометрию, необходимых для конструкций дифференциального исчисления. Так, в одном из первых учебников дифференциального исчисления маркиза Г. Ф. Лопиталя, ученика и соратника Лейбница, в деле развития этого нового учения мы читаем: вводится «…требование или допущение: требуется, чтобы можно было рассматривать кривую линию как совокупность бесконечного множества бесконечно малых прямых линий, или же (что то же самое) как многоугольник с бесконечным числом бесконечно малых сторон…»[32]. То, что многоугольник, вписанный, например, в окружность, при бесконечном увеличении (удвоении) его сторон будет стремиться к окружности, это, конечно, античные математики знали и даже использовали в своих вычислениях. Однако никто не считал на основании этого, что окружность есть бесконечный многоугольник с бесконечно малыми сторонами!.. Более того, острое чувство качественного отличия окружности от любого многоугольника, кривой от прямой, за которым стоял глубоко осознанный опыт онтологических рангов реальности, приводил к тому, что это соотношение вписанного многоугольника и описанной окружности нередко понимали как символ соотношения рассудочного знания и реальности: кажущаяся близость, но принципиальное внутреннее отличие…
То, что я только что описал, называется системой дифференциальных уравнений. С такими уравнениями нам приходится иметь дело каждый раз, когда правила для скоростей зависят от текущих положений. Задачи, подобные этой, изучаются еще со времен Исаака Ньютона (поначалу в связи с движением планет в Солнечной системе). В этом случае каждая планета притягивает все другие планеты, изменяя их местоположения, что, в свою очередь, изменяет гравитационные силы, действующие между ними, и т. д. – зеркальное отражение, во многом похожее на осцилляторы Уинфри с их постоянно изменяющимися фазами, а также с их силами воздействия и чувствительностью. Ньютон изобрел дифференциальное исчисление именно для решения сложных проблем, подобных рассматриваемой нами. Являясь автором одного из величайших достижений западной науки, он решил так называемую «задачу о двух телах» и доказал, что орбита Земли вокруг Солнца является эллиптической, как было предсказано Кеплером до него. Интересно, однако, что «задача о трех телах» оказалась совершенно неподъемной. На протяжении двух столетий лучшие математики и физики мира пытались найти формулы, описывающие движение трех притягивающих друг друга планет, но лишь в конце XIX века французский математик Анри Пуанкаре доказал тщетность таких попыток: таких формул нет и быть не может.
5 1680–1780 Классическая наука: научный подход, телескоп, микроскоп, маятниковые часы, термометр, арифмометр, фрезерный станок, паровой двигатель, оружие с кремниевым затвором, дифференциальное исчисление, законы И. Ньютона, академия наук, научный журнал, педагогика

Связанные понятия (продолжение)

Дифференциальное уравнение в частных производных (частные случаи также известны как уравнения математической физики, УМФ) — дифференциальное уравнение, содержащее неизвестные функции нескольких переменных и их частные производные.
Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован...
В компле́ксном анализе вы́четом заданного объекта (функции, формы) называется объект (число, форма или когомологический класс формы), характеризующий локальные свойства заданного.

Подробнее: Вычет (комплексный анализ)
Квазианалити́ческие фу́нкции в математическом анализе — класс функций, которые, нестрого говоря, можно полностью реконструировать по их значениям на небольшом участке (например, на границе области). Такое свойство значительно облегчает решение дифференциальных уравнений и исследование других задач анализа. Поскольку это свойство выполняется для аналитических функций (см. Комплексный анализ), то класс квазианалитических функций содержит класс обычных аналитических функций и может рассматриваться как...

Подробнее: Квазианалитическая функция
Комплексный логарифм — аналитическая функция, получаемая распространением вещественного логарифма на всю комплексную плоскость (кроме нуля). Существует несколько эквивалентных способов такого распространения. Данная функция имеет широкое применение в комплексном анализе. В отличие от вещественного случая, функция комплексного логарифма многозначна.
Непрерывная функция — функция, которая меняется без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.
Произво́дная функции — понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если такой предел существует. Функцию, имеющую конечную производную (в некоторой точке), называют дифференцируемой (в данной точке).
Смешанные частные производные одной и той же функции, отличающиеся лишь порядком (очерёдностью) дифференцирования, равны между собой при условии их непрерывности. Такое свойство называется равенством смешанных производных.

Подробнее: Равенство смешанных производных
Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел.
В математике и теоретической физике функциональная производная является обобщением производной по направлению. Разница заключается в том, что для последней дифференцирование производится в направлении какого-нибудь вектора, а для первой речь идёт о функции. Оба эти понятия можно рассматривать как обобщение обычного дифференциального исчисления.

Подробнее: Функциональная производная
В настоящее время отсутствует единое определение точно решаемой задачи для всех разделов математики. Это обусловлено особенностями самих задач и методов поиска их решения. Вместе с тем базовые теоремы, определяющие наличие и единственность решений, строятся на общих принципах, что будет показано ниже.

Подробнее: Точнорешаемая задача
В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.

Подробнее: Монодромия
Теорема Сарда — одна из теорем математического анализа, имеющих важные приложения в теории катастроф и теории динамических систем.Названа в честь американского математика Артура Сарда.
Суммирующая функция делителей в теории чисел — функция, являющаяся суммой функции делителей.
Метод конечных элементов (МКЭ) — это численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.

Подробнее: Спектральный метод
Интеграл — одно из важнейших понятий математического анализа, которое возникает при решении задач о нахождении площади под кривой, пройденного пути при неравномерном движении, массы неоднородного тела, и тому подобных, а также в задаче о восстановлении функции по её производной (неопределённый интеграл). Упрощённо интеграл можно представить как аналог суммы для бесконечного числа бесконечно малых слагаемых. В зависимости от пространства, на котором задана подынтегральная функция, интеграл может быть...
Целая функция — функция, регулярная во всей комплексной плоскости. Типичным примером целой функции может служить многочлен или экспонента, а также суммы, произведения и суперпозиции этих функций. Ряд Тейлора целой функции сходится во всей плоскости комплексного переменного. Логарифм, квадратный корень не являются целыми функциями.
Спор о струне, спор о колеблющейся струне, спор о звучащей струне — научная дискуссия, развернувшаяся в XVIII веке между крупнейшими учёными того времени вокруг изучения колебаний струны. В спор оказались вовлечены Д’Аламбер, Эйлер, Д. Бернулли, Лагранж. Дискуссия касалась определения понятия функции и оказала решающее влияние на множество разделов математики: теорию дифференциальных уравнений в частных производных, математический анализ и теорию функций вещественного переменного, теорию тригонометрических...
Формальное дифференцирование — операция над элементами кольца многочленов или кольцом формальных степенных рядов, повторяющая форму производных из математического анализа. Алгебраическое преимущество формального дифференцирования состоит в том, что оно не опирается на понятие предела, которое в общем случае невозможно определить для кольца. Многие свойства производной верны для формального дифференцирования, но некоторые, особенно касающиеся утверждений, содержащих числа, не верны. В основном формальное...
По́ле в общей алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на нуль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Хотя названия операций поля взяты из арифметики, следует иметь в виду, что элементы поля не обязательно являются числами, и определения операций могут быть далеки от арифметических.
Кватернионный анализ — это раздел математики, изучающий регулярные кватернионнозначные функции кватернионного переменного. Из-за некоммутативности алгебры кватернионов существуют различные неравносильные подходы к определению регулярных кватернионных функций. В данной статье будет рассматриваться, в основном, подход Фютера.
Дифференци́руемая (в точке) фу́нкция — это функция, у которой существует дифференциал (в данной точке). Дифференцируемая на некотором множестве функция — это функция, дифференцируемая в каждой точке данного множества. Дифференцируемость является одним из фундаментальных понятий в математике и имеет значительное число приложений как в самой математике, так и в других естественных науках.
В теории дифференциальных уравнений, начальные и граничные условия — дополнение к основному дифференциальному уравнению (обыкновенному или в частных производных), задающее его поведение в начальный момент времени или на границе рассматриваемой области соответственно.
Фу́нкция Гри́на — функция, используемая для решения неоднородных дифференциальных уравнений с граничными условиями (неоднородной краевой задачи). Названа в честь английского математика Джорджа Грина, который первым развил соответствующую теорию в 1830-е годы.
Гамильто́нова меха́ника является одной из формулировок классической механики. Предложена в 1833 году Уильямом Гамильтоном. Она возникла из лагранжевой механики, другой формулировки классической механики, введённой Лагранжем в 1788 году. Гамильтонова механика может быть сформулирована без привлечения лагранжевой механики с использованием симплектических многообразий и пуассоновых многообразий.
Математическая формула (от лат. formula — уменьшительное от forma — образ, вид) — в математике, а также физике и прикладных науках, символическая запись высказывания (которое выражает логическое суждение), либо формы высказывания. Формула, наряду с термами, является разновидностью выражения формализованного языка.
Дифференциальное исчисление над коммутативными алгебрами — раздел коммутативной алгебры, возникший в семидесятых годах прошлого века.
В прикладной статистике метод наименьших полных квадратов (МНПК, TLS — англ. Total Least Squares) — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.
Множество больших тригонометрических сумм — понятие теории чисел — множество индексов, в которых преобразование Фурье характеристической функции заданного подмножества группы принимает достаточно большие значения.
Зада́ча Гурса́ — это разновидность краевой задачи для гиперболических уравнений и систем 2-го порядка с двумя независимыми переменными по данным на двух выходящих из одной точки характеристических кривых.
Гладкая функция, или непрерывно дифференцируемая функция, — функция, имеющая непрерывную производную на всём множестве определения. Очень часто под гладкими функциями подразумевают функции, имеющие непрерывные производные всех порядков.
Производная — фундаментальное математическое понятие, используемое в различных вариациях (обобщениях) во многих разделах математики. Это базовая конструкция дифференциального исчисления, допускающая много вариантов обобщений, применяемых в математическом анализе, дифференциальной топологии и геометрии, алгебре.
Произведением Мояля — самый известный пример звёздочного произведения в фазовом пространстве.
Функциональное уравнение — уравнение, выражающее связь между значением функции в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а...
Преде́л фу́нкции (предельное значение функции) в заданной точке, предельной для области определения функции, — такая величина, к которой стремится значение рассматриваемой функции при стремлении её аргумента к данной точке.
Особенность, или сингулярность в математике — это точка, в которой математический объект (обычно функция) не определён или имеет нерегулярное поведение (например, точка, в которой функция имеет разрыв или недифференцируема).
Волновое уравнение в физике — линейное гиперболическое дифференциальное уравнение в частных производных, задающее малые поперечные колебания тонкой мембраны или струны, а также другие колебательные процессы в сплошных средах (акустика, преимущественно линейная: звук в газах, жидкостях и твёрдых телах) и электромагнетизме (электродинамике). Находит применение и в других областях теоретической физики, например при описании гравитационных волн. Является одним из основных уравнений математической физики...
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
Пучок — структура, используемая для установления отношений между локальными и глобальными данными.
Метод разделения переменных — метод решения дифференциальных уравнений, основанный на алгебраическом преобразовании исходного уравнения к равенству двух выражений, зависящих от разных независимых переменных.
Аппроксима́ция (от лат. proxima — ближайшая) или приближе́ние — научный метод, состоящий в замене одних объектов другими, в каком-то смысле близкими к исходным, но более простыми.
Теневое исчисление (от англ. Umbral calculus, далее от лат. umbra — «тень») — математический метод получения некоторых алгебраических тождеств. До 1970-х термин относился к схожести некоторых внешне несвязанных алгебраических тождеств, а также к техникам, использованных для доказательства этих тождеств. Эти техники предложил Джон Блиссард и они иногда называются символическим методом Блиссарда. Их часто приписывают Эдуарду Люка (или Джеймсу Джозефу Сильвестру), которые их интенсивно использовали...
Ме́тод Чаплы́гина (также известен как метод двухсторонних приближений) — метод приближённого решения дифференциальных уравнений с заданной степенью точности, который был предложен С. А. Чаплыгиным и основывается на теореме Чаплыгина. Метод предназначен для решения задачи Коши для системы ОДУ первого порядка (либо для одного ОДУ порядка выше первого) и состоит в построении двух семейств барьерных решений, последовательно приближающихся к точному решению системы.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я