Дерево Тремо

  • Дерево Тремо неориентированного графа G — это остовное дерево графа G с выделенным корнем со свойством, что любые две смежные вершины в графе G связаны друг с другом отношением предок/потомок. Все деревья поиска в глубину и все гамильтоновы пути являются деревьями Тремо.

    Деревья Тремо названы именем Чарльза Пьера Тремо, французского автора 19-го века, который использовал вариант поиска в глубину как стратегию выхода из лабиринта. Деревья Тремо также называют нормальными остовными деревьями, особенно в контексте бесконечных графов.

    В конечных графах, хотя поиск в глубину сам по себе изначально последователен, деревья Тремо могут быть построены рандомизированным параллельным алгоритмом с классом сложности RNC. Деревья Тремо можно использовать для определения глубины дерева графа и как часть критерия планарности для проверки, является ли граф планарным.

    Описание деревьев Тремо одноместной логикой графов второго порядка позволяет распознать эффективно свойства графа, зависимые от ориентации, для графов с ограниченной древесной шириной при использовании теоремы Курселя.

    Не любой бесконечный граф имеет дерево Тремо и графы, такого дерева не имеющие, можно описать запрещёнными минорами.

    Дерево Тремо существует в любом графе со счётным числом вершин, даже если вариант бесконечного поиска в глубину не может успешно проверить все вершины графа.

    В бесконечном графе дерево Тремо должно иметь в точности один бесконечный путь для каждого луча графа и существование дерева Тремо характеризует графы, топологические пополнения которых, образованные добавлением бесконечно удалённой точки для каждого луча, являются метрическими пространствами.

Источник: Википедия

Связанные понятия

В теории графов глубина дерева связного неориентированного графа G — это числовой инвариант G, минимальная высота дерева Тремо для суперграфа графа G. Этот инвариант и близкие понятия встречаются под различными именами в литературе, включая число ранжирования вершин, упорядоченное хроматическое число и минимальная высота исключения дерева. Понятие близко также к таким понятиям, как циклический ранг ориентированных графов и высота итерации языка регулярных языков ; . Интуитивно, если древесная ширина...
Структурная теорема графов — это главный результат в области теории графов. Результат устанавливает глубокую и фундаментальную связь между теорией миноров графов и топологическими вложениями. Теорема была сформулирована в семнадцати статьях из серии из 23 статей Нейла Робертсона и Пола Сеймура. Доказательство теоремы очень длинно и запутано. Каварабайаши и Мохар и Ловаш провели обзор теоремы в доступном для неспециалистов виде, описав теорему и её следствия.
Остовное дерево графа состоит из минимального подмножества рёбер графа, таких, что из любой вершины графа можно попасть в любую другую вершину, двигаясь по этим рёбрам.
В теории графов говорят, что граф G гипогамильтонов, если сам по себе граф не имеет гамильтонова цикла, но любой граф, полученный удалением одной вершины из G, является гамильтоновым.

Подробнее: Гипогамильтонов граф
В теории графов нечётные графы On — это семейство симметричных графов с высоким нечётным обхватом, определённых на некоторых семействах множеств. Они включают и обобщают графы Петерсена.

Подробнее: Нечётный граф
Кографы открывались независимо несколькими авторами, начиная с 1970-х годов. Самые ранние упоминания можно найти у Янга, Лерчса, Зайнше и Самнера. Эти графы назывались D*-графами, наследственными графами Дейси (после работы Джеймса Дейси об ортомодулярных решётках. Смотрите работу Самнера) и графы с двумя потомками Барлета и Ури.
В теории графов графом без клешней называется граф, который не содержит порождённых подграфов, изоморфных K1,3 (клешней).

Подробнее: Граф без клешней
В теории графов медианным графом называется неориентированный граф, в котором любые три вершины a, b, и c имеют единственную медиану — вершину m(a,b,c), которая принадлежит кратчайшим путям между каждой парой вершин a, b и c.

Подробнее: Медианный граф
Гамильто́нов граф — математический объект теории графов. Представляет собой граф (набор точек и соединяющих их линий), который содержит гамильтонов цикл. При этом гамильтоновым циклом является такой цикл (замкнутый путь), который проходит через каждую вершину данного графа ровно по одному разу.
Снарк в теории графов — связный кубический граф без мостов c хроматическим индексом 4. Другими словами, это граф, в котором каждая вершина имеет три соседние вершины и рёбра нельзя выкрасить только в три цвета, так чтобы два ребра одного цвета не сходились в одной вершине. (По теореме Визинга хроматический индекс кубического графа равен 3 или 4.) Чтобы избежать тривиальных случаев, снарками часто не считают графы, имеющие обхват меньше 5.
В теории графов псевдолес — это неориентированный граф , в котором любая связная компонента имеет максимум один цикл. То есть это система вершин и рёбер, соединяющих пары вершин, такая, что никакие два цикла не имеют общих вершин и не могут быть связаны путём. Псевдодерево — это связный псевдолес.
В теории графов укрытие — это определённый тип функции на множествах вершин неориентированного графа. Если укрытие существует, его может использовать беглец, чтобы выиграть игру преследование-уклонение на графе путём использования этой функции на каждом шаге игры для определения безопасных множеств вершин, куда можно перейти. Укрытия были впервые введены Сеймуром и Томасом как средство характеризации древесной ширины графов. Другие приложения этого понятия — доказательство существования малых сепараторов...
Экстремальная теория графов — это ветвь теории графов. Экстремальная теория графов изучает экстремальные (максимальные или минимальные) свойства графов, удовлетворяющих определённым условиям. Экстремальность может относиться к различным инвариантам графов, таким как порядок, размер или обхват. В более абстрактном смысле теория изучает, как глобальные свойства графа влияют на локальные подструктуры графа.
В теории графов свободный от t-биклик граф — это граф, в котором нет полных двудольных графов с 2t вершинами Kt,t в качестве подграфов. Семейство графов является свободным от биклик, если существует число t, такое, что все графы в семействе свободны от t-биклик. Семейства свободных от бициклов графов образуют одно из наиболее общих типов семейств разреженных графов. Они возникают в задачах инцидентности в комбинаторной геометрии, а также используются в теории параметрической сложности.
Говорят, что ориентированный граф апериодичен, если нет целого числа k > 1, делящего длину любого цикла графа. Эквивалентно, граф апериодичен, если наибольший общий делитель длин его циклов равен единице. Этот наибольший общий делитель для графа G называется периодом графа G.
В теории графов графом Халина называется некоторый вид планарного графа, который строится из дерева, имеющего по меньшей мере 4 вершины, ни одна из которых не имеет в точности двух соседей. Дерево рисуется на плоскости так, что никакие рёбра не пересекаются, затем добавляются рёбра, соединяющие все его листья в цикл. Графы Халина названы по имени немецкого математика Рудольфа Халина, изучавшего их в 1971 году, но кубические графы Халина изучались за столетие до этого английским математиком Томасом...

Подробнее: Граф Халина
В теории графов графами Пэли (названы в честь Раймонда Пэли) называются плотные неориентированные графы, построенные из членов подходящего конечного поля путём соединения пар элементов, отличающихся на квадратичный вычет. Графы Пэли образуют бесконечное семейство конференсных графов, поскольку тесно связаны с бесконечным семейством симметричных конференсных матриц. Графы Пэли дают возможность применить теоретические средства теории графов в теории квадратичных вычетов и имеют интересные свойства...

Подробнее: Граф Пэли
Число очередей графа — это инвариант графа, определённый аналогично стэковому числу (толщине книги) и использующий упорядочение FIFO (первый вошёл, первый вышел, очередь) вместо упорядочения LIFO (последним вошёл, первым вышел, стэк).
В теории графов «кактус» (иногда используется название кактусовое дерево) — это связный граф, в котором любые два простых цикла имеют не более одной общей вершины. Эквивалентно, любое ребро в таком графе принадлежит максимум одному простому циклу. Эквивалентно (для нетривиального кактуса) , любой блок (максимальный подграф без шарниров) является ребром или циклом.
Вырожденность известна также под именем k-ядерное число, ширина и зацепление, и, по существу, это то же самое, что и число раскраски или число Секереша — Вилфа. k-Вырожденные графы называются также k-индуктивными графами. Вырожденность графа может быть вычислена за линейное время с помощью алгоритма, который последовательно удаляет вершины с минимальной степенью. Компонента связности, оставшаяся после удаления всех вершин со степенью , меньшей k, называется k-ядром графа, и вырожденность графа равна...
Мост — ребро в теории графов, удаление которого увеличивает число компонент связности. Такие рёбра также известны как разрезающие рёбра, разрезающие дуги или перешейки. Эквивалентное определение — ребро является мостом в том и только в том случае, если оно не содержится ни в одном цикле.
Построение Хайоша — это операция над графами, названная именем венгерского математика Дьёрдя Хайоша, которая может быть использована для построения любого критического графа или любого графа, хроматическое число которого не меньше некоторого заданного порога.
Жёсткость графа — мера связности графа: граф G t-жёсток при некотором вещественном t, если для любого целого k > 1 нельзя разбить граф G на k различных компонент связности путём удаления менее чем tk вершин. Например, граф 1-жёсток, если число компонент, образующихся при удалении вершин, всегда не превосходит числа удалённых вершин. Жёсткость графа — это максимальное t, для которого он t-жёсток. Число является конечным числом для всех конечных графов, за исключением полных графов, которые, по соглашению...
Граф — абстрактный математический объект, представляющий собой множество вершин графа и набор рёбер, то есть соединений между парами вершин.
Эйлеров цикл — эйлеров путь, являющийся циклом, то есть замкнутый путь, проходящий через каждое ребро графа ровно по одному разу.
В топологической теории графов 1-планарный граф — граф, который может быть нарисован в евклидовой плоскости таким образом, что каждое ребро имеет максимум одно пересечение с единственным другим ребром.
Древесная ширина часто используется в качестве параметра в анализе параметрической сложности алгоритмов на графах. Графы с шириной дерева, не превосходящей k, называются частичными k-деревьями. Многие другие хорошо изученные семейства графов также имеют ограниченную ширину дерева.
Перечислены связные 3-регулярные (кубические) простые графы с малым числом вершин.

Подробнее: Таблица простых кубических графов
st-Планарный граф — это биполярная ориентация планарного графа, для которого как источник, так и сток ориентации находятся на внешней грани графа. То есть это ориентированный граф, нарисованный без пересечений на плоскости таким образом, что не имеется ориентированных циклов в графе, точно одна вершина графа не имеет входных дуг, точно одна вершина графа не имеет исходящих дуг, и обе эти две специальные вершины лежат на внешней грани графа.
Алгоритм сжатия цветков (англ. Blossom algorithm) — это алгоритм в теории графов для построения наибольших паросочетаний на графах. Алгоритм разработал Джек Эдмондс в 1961 году и опубликовал в 1965 году. Если дан граф G=(V, E) общего вида, алгоритм находит паросочетание M такое, что каждая вершина из V инцидентна не более чем одному ребру из M и M максимально. Паросочетание строится путём итеративного улучшения начального пустого паросочетания вдоль увеличивающих путей графа. В отличие от двудольного...
Кососимметрический граф — это ориентированный граф, который изоморфен своему собственному транспонированному графу, графу, образованному путём обращения всех дуг, с изоморфизмом, который является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
Два-графы не являются графами, и их не следует путать с другими объектами, которые называются 2-графами в теории графов, в частности, с 2-регулярными графами. Для их различения используется слово «два», а не цифра «2».
В теории графов снарки «Цветы» образуют бесконечное семейство снарков, введённых Айзексом Руфусом в 1975 году.

Подробнее: Снарк «Цветок»
В теории графов параллельно-последовательные графы — это графы с двумя различными вершинами, которые называются терминальными, образованные рекурсивно с помощью двух простых операций. Эти графы могут быть использованы для моделирования последовательного и параллельного соединения электрических цепей.

Подробнее: Параллельно-последовательный граф
Гипотеза Эрдёша-Бура — математическая проблема, касающаяся числа Рамсея на разреженных графах.
В теории графов графом единичных кругов называется граф пересечений семейства единичных кругов на евклидовой плоскости. То есть мы образуем вершину для каждого круга и соединяем две вершины ребром, если соответствующие круги пересекаются.

Подробнее: Граф единичных кругов
В теории графов граф называется хордальным, если каждый из его циклов, имеющих четыре ребра и более, имеет хорду (ребро, соединяющее две вершины цикла, но не являющееся его частью).
Задача о гамильтоновом пути и задача о гамильтоновом цикле — это задачи определения, существует ли гамильтонов путь (путь в неориентированном или ориентированном графе, который проходит все вершины графа ровно один раз) или гамильтонов цикл в заданном графе (ориентированном или неориентированном). Обе задачи NP-полны.
Граф Аполлония — это неориентированный граф, образованный рекурсивным процессом подразделения треугольника на три меньших треугольника. Графы Аполлония можно эквивалентно определить как планарные 3-деревья, как максимальные планарные хордальные графы, как однозначно 4-раскрашиваемые планарные графы или как графы блоковых многогранников. Графы названы именем Аполлония Пергского, изучавшего связанные построения упаковки кругов.
Рёберный граф гиперграфа — это граф, множество вершин которого является множеством гиперрёбер гиперграфа, а два гиперребра смежны, если они имеют непустое пересечение. Другими словами, рёберный граф гиперграфа — это граф пересечений семейства конечных множеств. Понятие является обобщением рёберного графа обычного графа.
В теории графов дистанционно-наследуемый граф (или вполне сепарабельный граф) — это граф, в котором расстояния в любом связном порождённом подграфе те же самые, что и в исходном графе. Таким образом, любой порождённый подграф наследует расстояния большего графа.
В теории графов хорошо покрытый граф (иногда встречается название хорошо укрытый граф) — это неориентированный граф, в котором любое минимальное вершинное покрытие имеет один и тот же размер (как и любое другое минимальное вершинное покрытие). Хорошо покрытые графы определил и изучал Пламмер.
В теории графов паросочетание или независимое множество рёбер в графе — это набор попарно несмежных рёбер.
Теорема Брукса — утверждение в теории графов, устанавливающее связь между максимальной степенью графа и его хроматическим числом. Согласно этой теореме вершины связного графа, в котором все вершины имеют не больше Δ соседей, можно раскрасить всего в Δ цветов, за исключением двух случаев — полных графов и циклов нечётной длины, для которых требуется Δ + 1 цветов.
Гипотеза Эрдёша — Фабера — Ловаса — это нерешённая проблема о раскраске графов, названная именами Пала Эрдёша, Ванса Фабера и Ласло Ловаса, которые сформулировали её в 1972. Гипотеза гласит...
Теорема Курселя — утверждение о том, что любое свойство графа, определяемое в логике графов второго порядка, может быть установлено за линейное время на графах с ограниченной древесной шириной. Результат впервые доказан Брюно Курселем в 1990 году и независимо переоткрыт Бори, Паркером и Товейем.
Связное доминирующее множество и остовное дерево с максимальной листвой являются двумя тесно связанными структурами, определёнными на неориентированном графе.
Гомоморфизм графов — это отображение между двумя графами, не нарушающее структуру. Более конкретно, это отображение между набором вершин двух графов, которое отображает смежные вершины в смежные.
Интервальный граф — граф пересечений мультимножества интервалов на прямой. Имеет по одной вершине для каждого интервала в множестве и по ребру между каждой парой вершин, если соответствующие интервалы пересекаются.
Древесность неориентированного графа — это минимальное число лесов, на которые можно разложить рёбра. Эквивалентно это является минимальным числом остовных деревьев, которые необходимы для покрытия рёбер графа.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я