Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.
Приведённый ознакомительный фрагмент книги Высшая математика. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
2. Условие нахождения трех точек на одной прямой. Уравнение прямой. Взаимное расположение точек и прямой. Пучок прямых. Расстояние от точки до прямой
1. Пусть даны три точки А1 (х1, у1), А2 (х2, у2), А3 (х3, у3), тогда условие нахождения их на одной прямой:
либо (х2 — х1) (у3 — у1) — (х3 — x1) (у2 — у1) = 0.
2. Пусть даны две точки А1 (х1, у1), А2 (х2, у2), тогда уравнение прямой, проходящей через эти две точки:
(х2 — х1)(у — у1) — (х — х1)(у2 — у1) = 0 или (х — х1) / (х2 — х1) = (у — у1) / (у2 — у1).
3. Пусть имеются точка М (х1, у1) и некоторая прямая L, представленная уравнением у = ах + с. Уравнение прямой, проходящей параллельно данной прямой L через данную точку М:
у — у1 = а(х — х1).
Если прямая L задана уравнением Ах + Ву + С = 0, то параллельная ей прямая, проходящая через точку М, описывается уравнением А(х — х1) + В(у — у1) = 0.
Уравнение прямой, проходящей перпендикулярно данной прямой L через данную точку М:
у — у1 = — (х — х1) / а
или
а(у — у1) = х1 — х.
Если прямая L задана уравнением Ах + Ву + С = 0, то параллельная ей прямая, проходящая через точку М(х1, у1), описывается уравнением А (у — у1) — В(х — х1) = 0.
4. Пусть даны две точки А1 (х1, у1), А2 (х2, у2) и прямая, заданная уравнением Ах + Ву + С = 0. Взаимное расположение точек относительно этой прямой:
1) точки А1, А2 лежат по одну сторону от данной прямой, если выражения (Ах1 + Ву1 + С) и (Ах2 + Ву2 + С) имеют одинаковые знаки;
2) точки А1, А2 лежат по разные стороны от данной прямой, если выражения (Ах1 + Ву1 + С) и (Ах2 + Ву2 + С) имеют разные знаки;
3) одна или обе точки А1, А2 лежат на данной прямой, если одно или оба выражения соответственно (Ах1 + + Ву1 + С) и (Ах2 + Ву2 + С) принимают нулевое значение.
5. Центральный пучок — это множество прямых, проходящих через одну точку М (х1, у1), называемую центром пучка. Каждая из прямых пучка описывается уравнением пучка у — у1 = к (х — х1) (параметр пучка к для каждой прямой свой).
Все прямые пучка можно представить уравнением: l(y — y1) = m(x — x1), где l, m — не равные одновременно нулю произвольные числа.
Если две прямые пучка L1 и L2 соответственно имеют вид (А1х + В1у + С1) = 0 и (А2х + В2у + С2) = 0, то уравнение пучка: m1(А1х + В1у + С1) + m2(А2х + В2у + С2) = 0. Если прямые L1 и L2 пересекающиеся, то пучок центральный, если прямые параллельны, то и пучок параллельный.
6. Пусть даны точка М (х1, у1) и прямая, заданная уравнением Ах + Ву + С = 0. Расстояние d от этой точки М до прямой:
Приведённый ознакомительный фрагмент книги Высшая математика. Шпаргалка предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других