Высшая математика. Шпаргалка

Аурика Луковкина, 2009

Настоящее издание поможет систематизировать полученные ранее знания, а также подготовиться к экзамену или зачету и успешно их сдать.

Оглавление

3. Полярные параметры прямой. Нормальное уравнение прямой. Преобразование координат

Полярными параметрами прямой L будут полярное расстояние р (длина перпендикуляра, проведенного к данной прямой из начала координат) и полярный угол α (угол между осью абсцисс ОХ и перпендикуляром, опущенным из начала координат на данную прямую L). Для прямой, представленной уравнением Ах + Ву + С = 0: полярное расстояние

полярный угол α

причем при C > 0 берется верхний знак, при C < 0 — нижний знак, при С = 0 знаки берутся произвольно, но либо оба плюса, либо оба минуса.

Нормальное уравнение прямой (уравнение в полярных параметрах) (cм. рис. 2): x cosα + y sinα — p = 0. Пусть прямая представлена уравнением вида Ах + Ву + С = 0. Чтобы данное уравнение привести к нормальному виду необходимо последнее разделить на выражение (знак берется в зависимости от знака С).

Рис. 2

После деления получается нормальное уравнение данной прямой:

Пусть имеется прямая L, которая пересекает оси координат. Тогда данная прямая может быть представлена уравнением в отрезках х / а + у / b = 1. Справедливо: если прямая представлена уравнением х / а + у / b = 1, то она отсекает на осях отрезки а, b.

Преобразование координат возможно путем переноса начала координат, или поворотом осей координат, или совместно переносом начала и поворотом осей.

При переносе начала координат справедливо следующее правило: старая координата точки равна новой, сложенной с координатой нового начала в старой системе. Например, если старые координаты точки М были х, у, а координаты нового начала в старой системе О*(х0, у0), то координаты точки М в новой системе координат с началом в точке О* будут равны х — х0, у — у0 т. е. справедливо следующее х = х* + х0, у = у* + у0 или х* = х — х0, у* = у — у0 (* новые координаты точки).

При повороте осей на некоторый угол φ справедливы следующие формулы (где х, у — старые координаты точки; х*, у* — новые координаты этой же точки):

x = x* cosα — y* sinα;

y = x* sinα + y* cosα

или

x* = x cosα + y sinα;

y* = — x sinα + y cosα.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я