Связанные понятия
Инверсия кривой — результат применения операции инверсии к заданной кривой C. По отношению к фиксированной окружности с центром O и радиусом k инверсия точки Q — это точка P, лежащая на луче OQ, и OP•OQ = k2. Инверсия кривой C — это множество всех точек P, являющихся инверсиями точек Q, принадлежащих кривой C. Точка O в этом построении называется центром инверсии, окружность называется окружностью инверсии, а k — радиусом инверсии.
Особая точка кривой — точка, в окрестности которой не существует гладкой параметризации. Точное определение зависит от типа изучаемой кривой.
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
Точка перегиба — точка плоской кривой, в которой её ориентированная кривизна меняет знак. Если кривая является графиком функции, то в этой точке выпуклая часть функции отделяется от вогнутой (то есть вторая производная функции меняет знак).
Начало координат (начало отсчёта) в евклидовом пространстве — особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.
Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.
Дифференциальная геометрия кривых — раздел дифференциальной геометрии, который занимается исследованием гладких пространственных и плоских кривых в евклидовом пространстве аналитическими методами.
Геометри́ческое ме́сто то́чек (ГМТ) — фигура речи в математике, употребляемая для определения геометрической фигуры как множества точек, обладающих некоторым свойством.
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.
Однородные координаты ―
система координат , используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.
Длина кривой (или, что то же, длина дуги кривой) — числовая характеристика протяжённости этой кривой. Исторически вычисление длины кривой называлось спрямлением кривой (от лат. rectificatio, спрямление).
Отношение инцидентности — это бинарное отношение между двумя различными типами объектов. Это включает понятия, которые можно выразить такими фразами как «точка лежит на прямой» или «прямая принадлежит плоскости». Наиболее существенное отношение инцидентности — между точкой P и прямой l, которое записывается как P I l. Если P I l, пара (P, l) называется флагом. В разговорном языке существует много выражений, описывающих отношение инцидентности (например, прямая проходит через точку, точка лежит на...
Подробнее: Инцидентность (геометрия)
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Инве́рсия (от лат. inversio «обращение») относительно окружности — преобразование евклидовой плоскости, переводящее обобщённые окружности (окружности либо прямые) в обобщённые окружности, при котором одна из окружностей поточечно переводится в себя.
Пло́скость — одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскости обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии.
Теорема Крамера об алгебраических кривых даёт необходимое и достаточное условия, при которых число точек на вещественной плоскости, принадлежащие алгебраической кривой, однозначно определяют кривую в невырожденных случаях. Это число равно...
Трёхмерная сфера , или трёхмерная гиперсфера, иногда 3-сфера, — трёхмерный аналог двумерной сферы. Состоит из множества точек, равноудалённых от фиксированной центральной точки в четырёхмерном евклидовом пространстве. Так же, как двумерная сфера, которая образует границу шара в трёх измерениях, 3-сфера имеет три измерения и является границей четырёхмерного шара.
Теорема Жордана — классическая теорема геометрии известная благодаря простоте формулировки и чрезвычайной сложности доказательства.
Асимпто́та или аси́мптота (от др.-греч. ἀσύμπτωτος — несовпадающий, не касающийся кривой с бесконечной ветвью) — прямая, обладающая тем свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Термин впервые появился у Аполлония Пергского, хотя асимптоты гиперболы исследовал ещё Архимед.
Метод хорд — итерационный численный метод приближённого нахождения корня уравнения.
Луч (в геометрии) или полупрямая — часть прямой, состоящая из данной точки и всех точек, лежащих по одну сторону от неё. Любая точка на прямой разделяет прямую на два луча.
В математике особой точкой векторного поля называется точка, в которой векторное поле равно нулю. Особая точка векторного поля является положением равновесия или точкой покоя динамической системы, определяемой данным векторным полем: фазовая траектория с началом в особой точке состоит в точности из этой особой точки, а соответствующая ей интегральная кривая представляет собой прямую, параллельную оси времени.
Подробнее: Особая точка (дифференциальные уравнения)
Строфоида (от греч. στροφή — поворот) — алгебраическая кривая 3-го порядка. Строится следующим образом (см. Рис. 1)...
Кватернионы предоставляют удобное математическое обозначение положения и вращения объектов в пространстве. В сравнении с углами Эйлера, кватернионы позволяют проще комбинировать вращения, а также избежать проблемы, связанной с невозможностью поворота вокруг оси, независимо от совершённого вращения по другим осям (на иллюстрации). В сравнении с матрицами они обладают большей вычислительной устойчивостью и могут быть более эффективными. Кватернионы нашли своё применение в компьютерной графике, робототехнике...
В математике термин
матрица Картана имеет три значения. Все они названы по имени французского математика Эли Картана. Фактически, матрицы Картана в контексте алгебр Ли впервые исследовал Вильгельм Киллинг, в то время как форма Киллинга принадлежит Картану.
Коллинеа́рность — отношение параллельности векторов: два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой. Допусти́м синоним — «параллельные» векторы.
Окольцованное пространство — топологическое пространство, каждому открытому множеству которого сопоставлено коммутативное кольцо «функций» на этом множестве. Окольцованные пространства, в частности, используются при определении схем.
Подмногообразие ― термин, используемый для нескольких схожих понятий в общей топологии, дифференциальной геометрии и алгебраической геометрии.
В гиперболической геометрии
гиперболический треугольник является треугольником на гиперболической плоскости. Он состоит из трёх отрезков, называемых сторонами или рёбрами, и трёх точек, называемых углами или вершинами.
Многомерный
анализ (также известный как многомерное или многовариантное исчисление) является обобщением дифференциального и интегрального исчислений для случая нескольких переменных.
Теорема косинусов — теорема евклидовой геометрии, обобщающая теорему Пифагора на произвольные плоские треугольники.
Поверхность вращения — поверхность, образуемая при вращении вокруг прямой (оси поверхности) произвольной линии (прямой, плоской или пространственной кривой). Например, если прямая пересекает ось вращения, то при её вращении получится коническая поверхность, если параллельна оси — цилиндрическая, если скрещивается с осью — гиперболоид. Одна и та же поверхность может быть получена вращением самых разнообразных кривых.
Систе́ма корне́й (корнева́я систе́ма) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам.
Проективная модель (называемая также Модель Клейна и модель Бельтрами — Клейна) — модель геометрии Лобачевского, предложена итальянским математиком Эудженио Бельтрами.
В теории групп циклическая перестановка — это перестановка элементов некоторого множества X, которая переставляет элементы некоторого подмножества S множества X циклическим образом, сохраняя на месте остальные элементы X (т.е. отображая их в себя). Например, перестановка {1, 2, 3, 4}, переводящая 1 в 3, 3 в 2, 2 в 4 и 4 в 1 является циклической, в то время как перестановка, переводящая 1 в 3, 3 в 1, 2 в 4 и 4 в 2 циклической не является.
Единичный круг — круг радиуса 1 на евклидовой плоскости (рассматриваемый обычно на комплексной плоскости); «идиоматическая» область в комплексном анализе.
Архимедова спираль — спираль, плоская кривая, траектория точки M (см Рис. 1), которая равномерно движется вдоль луча OV с началом в O, в то время как сам луч OV равномерно вращается вокруг O. Другими словами, расстояние ρ = OM пропорционально углу поворота φ луча OV.
Бесконечная группа — группа с бесконечным числом элементов, в противоположность конечным группам.
Параллельные прямые (от греч. παράλληλος, буквально — идущий рядом) — в планиметрии прямые, которые не пересекаются, сколько бы их ни продолжали в обе стороны.
В геометрии центральные прямые — это некоторые специальные прямые, связанные с треугольником и лежащие в плоскости треугольника. Особое свойство, которое отличает прямые как пифагоров триеугольникцентральные прямые проявляется через уравнение прямой в основе фиботаччи трилинейных координатах. Это особое свойство также связано с понятием центр треугольника. Понятие центральной прямой было введено Кларком Кимберлингом в статье, опубликованной в 1994 году.
Подробнее: Центральная прямая
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Геодези́ческая (геодезическая линия) — кривая определённого типа, обобщение понятия «прямая» для искривлённых пространств.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.