Понятия со словом «несчётно»
Связанные понятия
Совершенное множество — замкнутое множество, не имеющее изолированных точек, то есть совпадающее с множеством всех своих предельных точек.
Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.
Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.
Гиперко́мпле́ксные числа — различные расширения вещественных чисел, такие как комплексные числа, кватернионы и пр.
Подробнее: Гиперкомплексное число
Норма́льное простра́нство — топологическое пространство, удовлетворяющее аксиомам отделимости T1, T4, то есть такое топологическое пространство, в котором одноточечные множества замкнуты и любые два непересекающихся замкнутых множества отделимы окрестностями (то есть содержатся в непересекающихся открытых множествах).
В теории графов
число Хадвигера неориентированного графа G — это размер наибольшего полного графа, который может быть получен стягиванием рёбер графа G.
Древесность неориентированного графа — это минимальное число лесов, на которые можно разложить рёбра. Эквивалентно это является минимальным числом остовных деревьев, которые необходимы для покрытия рёбер графа.
Сказание о подвигах Фёдора Тиринина (Житие святого Фёдора Тирона) — апокриф о Фёдоре Тироне, связанный с темой основного мифа: герой побеждает змея, похитившего его мать. Сюжет хорошо известен в христианских преданиях (наиболее известно «Чудо Георгия о змие»), так как использовался для распространения христианского вероучения.
Бочкой в топологическом векторном пространстве называется подмножество, которое радиально выпукло, закруглено и замкнуто.
Подробнее: Бочечное пространство
Составно́е число́ (в XIX веке также сложное число) — натуральное число, бо́льшее 1, не являющееся простым. Каждое составное число является произведением двух или более натуральных чисел, бо́льших 1.
Считающая ме́ра (также счётная мера) — формальный эквивалент количества элементов множества.
В математике,
несократимая дробь (также приведённая дробь) — дробь, которую невозможно сократить. Иначе говоря, значение несократимой дроби не допускает более простое представление в виде дроби. В случае обыкновенных дробей «более простое» означает: с меньшим (но натуральным) знаменателем.
Голова быка — планарный неориентированный граф с 5 вершинами и 5 рёбрами в форме треугольника с двумя непересекающимися висячими рёбрами.
В теории чисел гладким числом называется целое число, все простые делители которого малы.
Подробнее: Гладкое число
Хлеб-соль (хлеб да соль, хлебосоль) — сочетание хлеба и соли, характерное для их хранения и использования в быту и в обрядах; обобщенное наименование пищи; приветствие, обращенное к участникам трапезы.
Теорема де Брёйна — Эрдёша — классическая теорема теории графов доказанная Палом Эрдёшем и Николаасом де Брёйном.
Креще́нский ве́чер — день народного календаря у славян, отмечаемый 5 (18) января. Наиболее насыщенным обрядами является вечер, когда Русская православная церковь почитает навечерие Богоявления (Крещенский сочельник). День строгого поста. Последний день колядований, последние святочные гадания. Под Крещение собирают снег, который, как считается, обладает особыми целебными свойствами и сохраняет свежей воду в колодцах в течение года.
Лемма о рукопожатиях — положение теории графов, согласно которому любой конечный неориентированный граф имеет чётное число вершин нечётных степеней. Лемма берёт название от популярной аналогии: в группе людей, некоторые из которых пожимают друг другу руки, чётное число людей поприветствовало таким образом нечётное число коллег.
Теорема Понтрягина — Куратовского, или теорема Куратовского, — теорема в теории графов, дающая необходимое и достаточное условие планарности графа.
Теорема Э́рдёша — Се́кереша в комбинаторике — утверждение, уточняющее одно из следствий теоремы Рамсея для финитного случая. В то время как теорема Рамсея облегчает доказательство того, что каждая последовательность разных действительных чисел содержит монотонно возрастающую бесконечную подпоследовательность или монотонно убывающую бесконечную подпоследовательность, результат, доказанный Палом Эрдёшем и Дьёрдем Секерешем, идёт дальше. Для данных r, s они показали, что любая последовательность разных...
Вознесе́ньев день (Вознесение) — день в народном календаре у славян, приходящийся на 40-й день после Пасхи, который всегда приходится на четверг, и посвящённый памяти Вознесения Господня. Считалось, что с Вознесеньева дня начинается полный расцвет весны и переход к лету; с этого дня начинали провожать весну. Последнее же весеннее воскресенье именовалось «проводами весны и встречей русалок».
Соизмери́мые величи́ны — величины, для которых соответственно существует общая мера. Общей мерой величин называют величину, которая целое число раз содержится в каждой из них. Если такой меры, которая укладывается целое число раз в каждую величину, не существует, то такие величины называют несоизмери́мыми. Примером несоизмеримых величин могут служить диагональ квадрата и его сторона.
Притча о неразумном богаче – одна из притч Иисуса Христа содержащаяся в Евангелии от Луки. В ней рассказано о человеке, который богатство своё решил употребить для развлечений и накопительства, не зная, что вскоре умрет...
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
Последовательность функций сходится
почти всюду к предельной функции, если множество точек, для которых сходимость отсутствует, имеет нулевую меру.
Шиши́га, шишо́к (муж. шиш, шишиган, шишимора-кикимора) — в мифологии русских крестьян нечистая сила, живущая за печкой, в лесу (лешачиха, леший) и на болоте (болотник), в бане (банник), в овине (овинный домовой); бес.
Недоста́точное число́ — натуральное число, сумма собственных делителей которого меньше самого числа.
Подробнее: Недостаточные числа
k-Смежностный многогранник — это выпуклый многогранник, в котором любое k-элементное подмножество его вершин является множеством вершин некоторой грани этого многогранника.
Мера Радона — мера на сигма-алгебре борелевских множеств на хаусдорфовом топологическом пространстве X, которая является локально конечной и внутреннее регулярной.
Лемма Гаусса — утверждение про свойства многочленов над факториальными кольцами, которое впервые было доказано для многочленов над кольцом целых чисел. Широко применяется в теории колец и полей, в частности, при доказательстве факториальности кольца многочленов над факториальным кольцом и теоремы Люрота.
Свойство удвоения — условие, накладываемое на меры, определённые на метрических пространствах, а также на сами метрические пространства.
Локально линейно связное пространство ― топологическое пространство, в котором для любой точки и любой её окрестности имеется меньшая линейно связная окрестность. Другими словами, у каждой точки найдётся база окрестностей, состоящая из линейно связных множеств.
В метрике теории графов выпуклым подграфом неориентированного графа G называется подграф, который включает любой кратчайший путь в G между любыми двумя вершинами. Таким образом, это аналогично определению выпуклого множества в геометрии — такое множество содержит отрезок, соединяющий любые две точки множества.
Подробнее: Выпуклый подграф
Теорема о точках плотности — результат теории меры, которой интуитивно можно понимать так, что множество «граничных точек» измеримого множества имеет меру ноль.
Теоре́ма Радо́на — Нико́дима в функциональном анализе и смежных дисциплинах описывает общий вид меры, абсолютно непрерывной относительно другой меры.
Полиэдральный граф — неориентированный граф, образованный из вершин и рёбер выпуклого многогранника, или, в контексте теории графов — вершинно 3-связный планарный граф.
В теории графов колесом Wn называется граф с n вершинами (n ≥ 4), образованный соединением единственной вершины со всеми вершинами (n-1)-цикла.
Подробнее: Колесо (теория графов)
Случайное компактное множество — это, по существу, случайная величина со значениями в компактных множествах. Случайные компактные множества используются при изучении аттракторов случайных динамических систем.
Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов.
Подробнее: Выпуклое метрическое пространство
Теорема о дисконтинууме — утверждение о том, что между точками любых двух ограниченных дисконтинуумов можно установить взаимно однозначное соответствие, сохраняющее порядок следования точек на прямой.
В теории графов гармоническая раскраска — это (правильная) раскраска вершин, при которой любая пара цветов появляется на смежных вершинах не более одного раза. Гармоническое хроматическое число χH(G) графа G — это минимальное число цветов, необходимых для гармонической раскраски графа G.
Кликание весны (закликание весны, выкликать весну, весну гукати, зачинати весну) — славянский обряд, сопровождавшийся пением или выкрикиванием особых весенних песен — веснянок, закличек, смысл которого приглашение весны прийти и/или прилететь птицам.
В математике
теорема Веблена, доказанная Вебленом, утверждает, что множество рёбер конечного графа можно представить в виде объединения непересекающихся простых циклов в том и только в том случае, когда любая вершина имеет чётную степень. Таким образом, эта теорема тесно связана с теоремой Эйлера, о том, что конечный граф имеет эйлеров цикл (единичный, не обязательно простой, цикл, покрывающий все рёбра графа) в том и только в том случае, когда граф связен и любая вершина имеет чётную степень. Более...
В теории графов outerplanar graph — это граф, допускающий планарную диаграмму, в которой все вершины принадлежат внешней грани.
Подробнее: Внешнепланарный граф
Боре́левская си́гма-а́лгебра — минимальная сигма-алгебра, содержащая все открытые подмножества топологического пространства (также она содержит и все замкнутые). Эти подмножества также называются борелевскими.