Понятия со словом «забывающий»

Связанные понятия

В математике, категория групп — это категория, класс объектов которой составляют группы, а морфизмы — гомоморфизмы групп.
В теории категорий моноидальные функторы — это функторы между моноидальными категориями, сохраняюющие моноидальную структуру, то есть умножение и тождественный элемент.

Подробнее: Моноидальный функтор
В теории категорий множества Hom (то есть множества морфизмов между двумя объектами) позволяют определить важные функторы в категорию множеств. Эти функторы называются функторами Hom и имеют многочисленные приложения в теории категорий и других областях математики.

Подробнее: Функтор Hom
Функтор — особый тип отображений между категориями. Его можно понимать как отображение, сохраняющее структуру. Функторы между малыми категориями являются морфизмами в категории малых категорий. Совокупность всех категорий не является категорией в обычном смысле, так как совокупность её объектов не является классом. Один из способов преодолеть подобные теоретико-множественные трудности — добавление в ZFC независимой от неё аксиомы о существовании недостижимых кардиналов.
Ниже приведён список интегралов (первообразных функций) от обратных тригонометрических функций.
В теория категорий, замкнутая моноидальная категория — это категория, позволяющая брать тензорные произведения объектов, а также рассматривать объекты, соответствующие множествам морфизмов. Классический пример — категория множеств, в которой существует декартово произведение множеств, а также множество функций между двумя множествами. «Объект, соответствующий множеству морфизмов» обычно называют внутренним Hom.
Конкретная категория в математике — категория, снабжённая строгим функтором в категорию множеств. Благодаря этому функтору можно оперировать с объектами такой категории образом, сходным с работой с множествами с дополнительной структурой, а морфизмы представлять как функции, сохраняющие дополнительную структуру. Многие категории имеют очевидную интерпретацию конкретных категорий, например, категория групп, категория топологических пространств и собственно категория множеств. С другой стороны, существуют...
В теории категорий, представимый функтор — функтор специального типа из произвольной категории в категорию множеств. В некотором смысле, такие функторы задают представление категории в терминах множеств и функций.
В теории категорий есте́ственное преобразова́ние предоставляет способ перевести один функтор в другой, сохраняя внутреннюю структуру (например, композиции морфизмов). Поэтому естественное преобразование можно понимать как «морфизм функторов». Эта интуиция может быть строго формализована в определении категории функторов. Естественные преобразования — наиболее базовое определение в теории категорий наряду с функторами, поэтому оно появляется в большинстве её приложений.

Подробнее: Естественное преобразование
В классической механике ско́бки Пуассо́на (также возможно ско́бка Пуассо́на и скобки Ли) — это оператор, играющий центральную роль в определении эволюции во времени динамической системы. Эта операция названа в честь С.-Д. Пуассона.

Подробнее: Скобка Пуассона
Теорема о разностях — теорема, связывающая понятия производной и прямой конечной разности высших порядков для степенной функции натурального показателя степени.
Норма́льное простра́нство — топологическое пространство, удовлетворяющее аксиомам отделимости T1, T4, то есть такое топологическое пространство, в котором одноточечные множества замкнуты и любые два непересекающихся замкнутых множества отделимы окрестностями (то есть содержатся в непересекающихся открытых множествах).
Теорема о диагонали — утверждение теории множеств о свойстве функции, значениями которой являются подмножества множества, содержащего её область определения.
В коммутативной алгебре идеал Q коммутативного кольца A называется примарным, если он не совпадает со всем кольцом, и для любого элемента Q вида xy либо x, либо yn для некоторого n>0 также является элементом Q. Например, в кольце целых чисел Z идеал примарен тогда и только тогда, когда он имеет вид (pn), где p — простое число.
Выпуклое множество в аффинном или векторном пространстве — множество, в котором все точки отрезка, образуемого любыми двумя точками данного множества, также принадлежат данному множеству.
В теории категорий, подфунктор — специальный тип функтора в Set, использующий определение подмножества.
Конечное топологическое пространство — топологическое пространство, в котором существует лишь конечное число точек.
В теории категорий, категория запятой — специальная конструкция, предоставляющая способ изучения морфизмов не как соотнесений объектов категории друг с другом, а как самостоятельных объектов. Название «категория запятой» появилось из-за первоначального (придуманного Ловером) обозначения, которое включало в себя знак запятой. Впоследствии стандартное обозначение изменилось из соображений удобства.
Считающая ме́ра (также счётная мера) — формальный эквивалент количества элементов множества.
Монотонный оператор — оператор, удовлетворяющий условию монотонности. Понятие монотонного оператора является обобщением понятия монотонной функции. Широко применяется в функциональном анализе при исследовании и приближённом решении краевых задач для дифференциальных уравнений с частными производными.
Теорема Стоуна о представлении булевых алгебр утверждает, что каждая булева алгебра изоморфна некоторому полю множеств.
Теорема Грушко о разложении даёт единственное разложение конечно порождённой группы в свободное произведение групп.
Экспоненциал — теоретико-категорный аналог множества функций в теории множеств. Категории, в которых существуют конечные пределы и экспоненциалы, называются декартово замкнутыми.
Боре́левская си́гма-а́лгебра — минимальная сигма-алгебра, содержащая все открытые подмножества топологического пространства (также она содержит и все замкнутые). Эти подмножества также называются борелевскими.
Коалгебра — математическая структура, которая двойственна (в смысле обращения стрелок) к ассоциативной алгебре с единицей. Аксиомы унитарной ассоциативной алгебры могут быть сформулированы в терминах коммутативных диаграмм. Аксиомы коалгебры получаются путём обращения стрелок. Каждая коалгебра c дуальностью (векторного пространства) порождает алгебру, но не наоборот. В конечномерном случае дуальность есть в обоих направлениях. Коалгебры встречаются в разных случаях (например, в универсальных обёртывающих...
Обратимая функция — это функция, которая принимает каждое своё значение в единственной точке области определения.
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
Топологическое векторное пространство, или топологическое линейное пространство, — векторное пространство, наделённое топологией, относительно которой операции сложения и умножения на число непрерывны.
Преобразование в математике — отображение (функция) множества в себя. Иногда (в особенности в математическом анализе и геометрии) преобразованиями называют отображения, переводящие некоторое множество в другое множество.
Теорема Мура о факторпространстве — классическое утверждение двумерной топологии, даёт достаточное условие на то, что факторпространство сферы гомеоморфно двумерной сфере.
Пейорати́в, или пейорати́вная ле́ксика (от лат. pējōrāre «ухудшать»), также дерогати́в (от англ. derogatory term) — слова и словосочетания, выражающие отрицательную оценку чего-либо или кого-либо, неодобрение, порицание, иронию или презрение. Несмотря на то, что при помощи пейоративов выражаются негативные эмоции, их не следует путать с ругательствами, поскольку бранная лексика и выражения или ненормативная лексика в пейоративах, как правило, не содержатся. По смыслу близко к выражению инвектива...
Моноидальная категория (или тензорная категория) — категория C, снабженная бифунктором...
Двойственное пространство (иногда сопряжённое пространство) — пространство линейных функционалов на заданном векторном пространстве.
Гиперко́мпле́ксные числа — различные расширения вещественных чисел, такие как комплексные числа, кватернионы и пр.

Подробнее: Гиперкомплексное число
Квазиизометрия — обобщение понятия изометрии на метрических пространствах, игнорирующая конечные отклонения, как абсолютные, так и относительные.
А́лгебра Ли — объект общей алгебры. Естественно появляется при изучении инфинитезимальных свойств групп Ли.
Характеристический многочлен матрицы — многочлен, определяющий её собственные значения.
Теорема о причёсывании ежа утверждает, что на сфере невозможно выбрать касательное направление в каждой точке, которое определено во всех точках сферы и непрерывно зависит от точки. Неформально говоря, невозможно причесать свернувшегося клубком ежа так, чтобы у него не торчала ни одна иголка — отсюда и упоминание ежа в названии теоремы.
Локально тривиальное расслоение — расслоение, которое локально выглядит как прямое произведение.
Гомеоморфи́зм (греч. ὅμοιος — похожий, μορφή — форма) — взаимно однозначное и взаимно непрерывное отображение топологических пространств. Иными словами, это биекция, связывающая топологические структуры двух пространств, поскольку, при непрерывности биекции, образы и прообразы открытых подмножеств являются открытыми множествами, определяющими топологии соответствующих пространств.
Аддитивная категория — предаддитивная категория C, в которой для любого конечного множества объектов A1, … , An существует произведение A1 × ⋯ × An в C, в том числе произведение пустого множества объектов — нулевой объект.
В коммутативной алгебре, дробный идеал — это обобщение понятия идеала целостного кольца, особенно полезное при изучении дедекиндовых колец. Условно говоря, дробные идеалы — это идеалы со знаменателями. В случаях, когда одновременно обсуждаются дробные и обычные идеалы, последние называют целыми идеалами.
Теорема Пикара — теорема о существовании и единственности решения обыкновенного дифференциального уравнения первого порядка.
Точный функтор — функтор, который переводит точные последовательности в точные. Точные функторы удобны для вычислений в гомологической алгебре, поскольку их можно сразу применять к резольвентам объектов. Бо́льшая часть гомологической алгебры была построена для того, чтобы сделать возможной работу с функторами, которые не являются точными, но их отличие от точных поддаётся контролю.
Максимальным идеалом коммутативного кольца называется всякий собственный идеал кольца, не содержащийся ни в каком другом собственном идеале.

Подробнее: Максимальный идеал
Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов...
Полунорма или преднорма — обобщение понятия норма; в отличие от последней, полунорма может равняться нулю на ненулевых элементах пространства.
Алгебра Хопфа — ассоциативная алгебра над полем, имеющая единицу, и являющаяся также коассоциативной коалгеброй с коединицей и, таким образом, биалгеброй c антигомоморфизмом специального вида. Названа в честь Х. Хопфа.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я