Понятия со словом «жадно»

Жадная раскраска в теории графов — раскраска вершин неориентированного графа, созданная жадным алгоритмом, который проходит вершины графа в некоторой предопределённой последовательности и назначает каждой вершине первый доступный цвет. Жадные алгоритмы, в общем случае, не дают минимально возможное число цветов, однако они используются в математике в качестве техники доказательств других результатов, относящихся к раскраске, а также в компьютерных программах для получения раскраски с небольшим числом...
В теории распределённых вычислений и в геометрической теории графов жадное вложение — это процесс назначения координат узлам коммуникационной сети, с целью использовать жадный алгоритм географической маршрутизации сообщений в сети. Хотя жадное вложение было предложено для использования в беспроводных сенсорных сетях, в которых узлы уже имеют определённое положение в физическом пространстве, эти координаты могут отличаться от координат, даваемых жадным алгоритмом, которые могут в некоторых случаях...

Подробнее: Жадное вложение графа
Жадный алгоритм — алгоритм, заключающийся в принятии локально оптимальных решений на каждом этапе, допуская, что конечное решение также окажется оптимальным. Известно, что если структура задачи задается матроидом, тогда применение жадного алгоритма выдаст глобальный оптимум.

Связанные понятия

Алгоритм Эдмондса или алгоритм Чу — Лью/Эдмондса — это алгоритм поиска остовного ориентированного корневого дерева минимального веса (иногда называемого оптимальным ветвлением).
В исследовании операций под аппроксимационным алгоритмом понимается алгоритм, использующийся для поиска приближённого решения оптимизационной задачи.

Подробнее: Аппроксимационный алгоритм
Вероятностный метод — неконструктивный метод доказательства существования математического объекта с заданными свойствами. В основном используется в комбинаторике, но также и в теории чисел, линейной алгебре и математическом анализе, а также в информатике (например, метод вероятностного округления) и теории информации.
Целые числа называются взаимно простыми, если они не имеют никаких общих делителей, кроме ±1.
Восходящее планарное представление направленного ациклического графа — это вложение графа в евклидово пространство, в котором рёбра представлены как непересекающиеся монотонно возрастающие кривые. То есть, кривая, представляющая любое ребро, должна иметь свойство, что любая горизонтальная прямая пересекает его максимум в одной точке, и никакие два ребра не могут пересекаться, разве что на концах. В этом смысле это идеальный случай для послойного рисования графа, стиля представления графа, в котором...
Геометрический остов (англ. geometric spanner) или t-остовной граф, или t-остов первоначально был введён как взвешенный граф на множестве точек в качестве вершин, для которого существует t-путь между любой парой вершин для фиксированного параметра t. t-Путь определяется как путь в графе с весом, не превосходящим в t раз пространственное расстояние между конечными точками. Параметр t называется коэффициентом растяжения остова.
В теории графов глубина дерева связного неориентированного графа G — это числовой инвариант G, минимальная высота дерева Тремо для суперграфа графа G. Этот инвариант и близкие понятия встречаются под различными именами в литературе, включая число ранжирования вершин, упорядоченное хроматическое число и минимальная высота исключения дерева. Понятие близко также к таким понятиям, как циклический ранг ориентированных графов и высота итерации языка регулярных языков ; . Интуитивно, если древесная ширина...
Гомоморфизм графов — это отображение между двумя графами, не нарушающее структуру. Более конкретно, это отображение между набором вершин двух графов, которое отображает смежные вершины в смежные.
В теории графов графом без клешней называется граф, который не содержит порождённых подграфов, изоморфных K1,3 (клешней).

Подробнее: Граф без клешней
Группа классов идеалов дедекиндова кольца — это, грубо говоря, группа, позволяющая сказать, насколько сильно в данном кольце нарушается свойство факториальности. Эта группа тривиальна тогда и только тогда, когда дедекиндово кольцо является факториальным. Свойства дедекиндова кольца, касающиеся умножения его элементов, тесно связаны с устройством этой группы.
Дерево Тремо неориентированного графа G — это остовное дерево графа G с выделенным корнем со свойством, что любые две смежные вершины в графе G связаны друг с другом отношением предок/потомок. Все деревья поиска в глубину и все гамильтоновы пути являются деревьями Тремо.
Дробная раскраска — это тема молодой области теории графов, известной как теория дробных графов. Дробная раскраска является обобщением обычной раскраски. В традиционной раскраске графа каждой вершине назначается некий цвет, и смежным вершинам — тем, что связаны рёбрами, — должны быть назначены разные цвета. В дробной раскраске каждой вершине назначается набор цветов.
Задача о гамильтоновом пути и задача о гамильтоновом цикле — это задачи определения, существует ли гамильтонов путь (путь в неориентированном или ориентированном графе, который проходит все вершины графа ровно один раз) или гамильтонов цикл в заданном графе (ориентированном или неориентированном). Обе задачи NP-полны.
Задача о змее в коробке в теории графов и информатике имеет дело с поиском определённого вида пути вдоль рёбер гиперкуба. Этот путь начинается с одного угла и проходит вдоль рёбер столько углов, сколько он может достичь. После того как достигается новый угол, предыдущий угол и все его соседи делаются недопустимыми для использования. Путь никогда не должен проходить через угол после того, как он помечен как недопустимый.
Задача о клике относится к классу NP-полных задач в области теории графов. Впервые она была сформулирована в 1972 году Ричардом Карпом.
Задача о покрытии множества является классическим вопросом информатики и теории сложности. Данная задача обобщает NP-полную задачу о вершинном покрытии (и потому является NP-сложной). Несмотря на то, что задача о вершинном покрытии сходна с данной, подход, использованный в приближённом алгоритме, здесь не работает. Вместо этого мы рассмотрим жадный алгоритм. Даваемое им решение будет хуже оптимального в логарифмическое число раз. С ростом размера задачи качество решения ухудшается, но всё же довольно...
Задача о сумме подмножеств — это важная задача в теории сложности алгоритмов и криптографии.
Задача разбиения множества чисел — это задача определения, можно ли данное мультимножество S положительных целых чисел разбить на два подмножества S1 и S2, таких, что сумма чисел из S1 равна сумме чисел из S2. Хотя задача разбиения чисел является NP-полной, существует решение псевдополиномиального времени методом динамического программирования существуют эвристические алгоритмы решения для многих конкрентных задач либо оптимально, либо приближённо. По этой причине задачу называют "простейшей NP-трудной...
Индифферентный граф — это неориентированный граф, построенный путём назначения вещественного числа каждой вершине и соединения двух вершин ребром, когда их числа отличаются не более чем на единицу. Индифферентные графы являются также графами пересечений множеств единичных отрезков или интервалов с определённым свойством вложения (никакой интервал не содержит какой-либо другой). Основываясь на этих двух типах интервальных представлений, эти графы называются также графами единичных отрезков или собственными...
В теории графов короной с 2n вершинами называется неориентированный граф с двумя наборами вершин ui и vi и рёбрами между ui и vj, если i ≠ j. Можно рассматривать корону как полный двудольный граф, из которого удалено совершенное паросочетание, как двойное покрытие двудольным графом полного графа, или как двудольный граф Кнезера Hn,1, представляющий подмножества из 1 элемента и (n − 1) элементов множества из n элементов с рёбрами между двумя подмножествами, если одно подмножество содержится в другом...

Подробнее: Корона (теория графов)
Косое разбиение графа — это разбиение его вершин на два подмножества, такое что порождённый подграф, образованный одним из его подмножеств вершин является несвязным, а другой порождённый подграф, образованный другим подмножеством является дополнением несвязного графа. Косые разбиения играют важную роль в теории совершенных графов.
Кососимметрический граф — это ориентированный граф, который изоморфен своему собственному транспонированному графу, графу, образованному путём обращения всех дуг, с изоморфизмом, который является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
Лемма регулярности Семереди — лемма из общей теории графов, утверждающая, что вершины любого достаточно большого графа можно разбить на конечное число групп таких, что почти во всех двудольных графах, соединяющих вершины из двух разных групп, рёбра распределены между вершинами почти равномерно. При этом минимальное требуемое количество групп, на которые нужно разбить множество вершин графа, может быть сколь угодно большим, но количество групп в разбиении всегда ограничено сверху.
В комбинаторной оптимизации под линейной задачей о назначениях на узкие места (linear bottleneck assignment problem, LBAP) понимается задача, похожая на задачу о назначениях.

Подробнее: Линейная задача о назначениях в узких местах
Метод условных вероятностей преобразует такое доказательство во «вполне точном смысле» в эффективный детерминированный алгоритм, который гарантирует обнаружение объекта с желаемыми свойствами. То есть метод дерандомизирует доказательство. Основная идея — заменить каждый случайный выбор в случайном эксперименте детерминированным выбором таким образом, чтобы сохранить условное математическое ожидание неудачи, обусловленной выбором, меньшим 1.
Модульное разложение — это разложение графа на подмножества вершин, называемых модулями. Модуль является обобщением компоненты связности графа. В отличие от компонент связности, однако, один модуль может быть собственным подмножеством другого. Модули, поэтому, ведут к рекурсивной (иерархической) декомпозиции графа, а не просто к разбиениям.
Неравенство числа пересечений или лемма о пересечениях даёт нижнюю грань минимального числа пересечений данного графа как функцию от числа рёбер и вершин графа. Лемма утверждает, что для графов, у которых число рёбер e достаточно велико по сравнению с числом вершин n, число пересечений по меньшей мере пропорционально e3/n2.
В теории графов нечётные графы On — это семейство симметричных графов с высоким нечётным обхватом, определённых на некоторых семействах множеств. Они включают и обобщают графы Петерсена.

Подробнее: Нечётный граф
Периферийный цикл в неориентированном графе является, интуитивно, циклом, который не отделяет любую часть графа от любой другой части. Периферийные циклы (или, как они сначала назывались, периферийные многоугольники, поскольку Тат называл циклы «многоугольниками»), первым изучал Тат и они играют важную роль в описании планарных графов и в образовании циклических пространств непланарных графов.
Планарное накрытие конечного графа G — это конечный накрывающий граф графа G, являющийся планарным графом. Любой граф, который может быть вложен в проективную плоскость, имеет планарное накрытие. Нерешённая гипотеза Сэйи Негами утверждает, что только эти графы и имеют планарные накрытия.
В теории графов пороговый граф — это граф, который может быть построен из одновершинного графа последовательным выполнением следующих двух операций...
Порождённый подграф графа — это другой граф, образованный из подмножества вершин графа вместе со всеми рёбрами, соединяющими пары вершин из этого подмножества.
Построение Хайоша — это операция над графами, названная именем венгерского математика Дьёрдя Хайоша, которая может быть использована для построения любого критического графа или любого графа, хроматическое число которого не меньше некоторого заданного порога.
Практичное число или панаритмичное число — это положительное целое число n, такое что все меньшие положительные целые числа могут быть представлены в виде суммы различных делителей числа n. Например, 12 является практичным числом, поскольку все числа от 1 до 11 можно представить в виде суммы делителей 1, 2, 3, 4 и 6 этого числа — кроме самих делителей, мы имеем 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1 и 11 = 6 + 3 + 2.
Рациональное решето — это алгоритм общего вида для разложения целых чисел на простые множители. Алгоритм является частным случаем общего метода решета числового поля. Хотя он менее эффективен, чем общий алгоритм, концептуально он проще. Алгоритм может помочь понять, как работает общий метод решета числового поля.
Сильная гипотеза о совершенных графах — это характеризация запрещёнными графами совершенных графов как в точности тех графов, которые не имеют ни нечётных дыр (порождённых циклов нечётной длины), ни нечётных антидыр (дополнений нечётным дырам). Гипотезу высказал Берж в 1961. Доказательство Марии Чудновской, Нила Робертсона, Пола Сеймура и Робина Томаса было заявлено в 2002 и опубликовано ими в 2006.
Структурная теорема графов — это главный результат в области теории графов. Результат устанавливает глубокую и фундаментальную связь между теорией миноров графов и топологическими вложениями. Теорема была сформулирована в семнадцати статьях из серии из 23 статей Нейла Робертсона и Пола Сеймура. Доказательство теоремы очень длинно и запутано. Каварабайаши и Мохар и Ловаш провели обзор теоремы в доступном для неспециалистов виде, описав теорему и её следствия.
Теорема Брукса — утверждение в теории графов, устанавливающее связь между максимальной степенью графа и его хроматическим числом. Согласно этой теореме вершины связного графа, в котором все вершины имеют не больше Δ соседей, можно раскрасить всего в Δ цветов, за исключением двух случаев — полных графов и циклов нечётной длины, для которых требуется Δ + 1 цветов.
Теорема Грёча — это утверждение, что любой планарный граф без треугольников может быть раскрашен в три цвета. Согласно теореме о четырёх красках, для любого графа, который может быть нарисован на плоскости без пересечения рёбер, можно раскрасить его вершины не более чем в четыре различных цвета так, что любые два конца любого ребра имеют различные цвета. По теореме же Грёча достаточно лишь три цвета для планарных графов, которые не содержат трёх связанных друг с другом вершин.
Теорема де Брёйна — Эрдёша — классическая теорема теории графов доказанная Палом Эрдёшем и Николаасом де Брёйном.
Теорема о совершенных графах Ловаша утверждает, что неориентированный граф является совершенным тогда и только тогда, когда его дополнение также совершенно. Это утверждение высказал в виде гипотезы Берж и утверждение называют иногда слабой теоремой о совершенных графах, чтобы не смешивать со строгой теоремой о совершенных графах, описывающей совершенные графы их запрещёнными порождёнными подграфами.
«Тогда́ и то́лько тогда́» — логическая связка эквиваленции между утверждениями, применяемая в логике, математике, философии. Чтобы быть эквиваленцией, связка должна быть идентична стандартному материальному условному высказыванию («только тогда» эквивалентно «если … то»), соединённому со своей противоположностью, откуда и название связки. В результате истинность одного утверждения требует такой же истинности другого, то есть либо оба они истинны, либо оба ложны. Можно спорить о том, передаёт ли выражение...
Фактор-критический граф (или почти сочетаемый граф .) — это граф с n вершинами, в котором каждый подграф с n − 1 вершинами имеет совершенное паросочетание. (Совершенное паросочетание в графе — это подмножество рёбер со свойством, что каждая из вершин графа является конечной вершиной в точности одного ребра из подмножества.)
Хроматический многочлен — многочлен, изучаемый в алгебраической теории графов. Многочлен считает число раскрасок графа как функции от числа цветов. Многочлен первоначально определил Джордж Дейвид Биркгоф в попытке атаки на проблему четырёх красок. Многочлен обобщили Х. Уитни и У. Т. Тат до многочлена Тата, связав его с моделью Поттса статистической физики.
В теории графов циркулянтным графом называется неориентированный граф, имеющий циклическую группу симметрий, которая включает симметрию, переводящую любую вершину в любую другую вершину.

Подробнее: Циркулянтный граф
В теории графов число Хадвигера неориентированного графа G — это размер наибольшего полного графа, который может быть получен стягиванием рёбер графа G.
Экстремальная теория графов — это ветвь теории графов. Экстремальная теория графов изучает экстремальные (максимальные или минимальные) свойства графов, удовлетворяющих определённым условиям. Экстремальность может относиться к различным инвариантам графов, таким как порядок, размер или обхват. В более абстрактном смысле теория изучает, как глобальные свойства графа влияют на локальные подструктуры графа.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я