Понятия со словом «двудольные»

Двудо́льные (устар. варианты: двусемядольные, двусемянодольные) (лат. Dicotylédones), или Магнолиопси́ды (лат. Magnoliópsida) — класс покрытосеменных растений, у которых зародыш семени имеет две боковые супротивные семядоли.
Двудо́льный граф или бигра́ф — это математический термин теории графов, обозначающий граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части, то есть не существует ребра, соединяющего две вершины из одной и той же части.
В теории графов и комбинаторной оптимизации двудольная размерность или число бикликового покрытия графа G = (V, E) — это минимальное число биклик (то есть полных двудольных подграфов), необходимых, чтобы покрыть всё рёбра E. Набор биклик, покрывающих все рёбра в G, называется бикликовым покрытием рёбер, или просто бикликовым покрытием. Двудольная размерность графа G часто обозначается символом d(G).

Подробнее: Двудольная размерность
Полный двудольный граф (биклика) — специальный вид двудольного графа, у которого любая вершина первой доли соединена со всеми вершинами второй доли вершин.
Двудольное двойное покрытие неориентированного графа G — это двудольный покрывающий граф графа G с двойным числом вершин по сравнению с G. Покрытие можно построить как тензорное произведение графов, G × K2. Это покрытие также называется двойным покрытием Кронекера или каноническим двойным покрытием графа G.

Связанные понятия

Полиэдральный граф — неориентированный граф, образованный из вершин и рёбер выпуклого многогранника, или, в контексте теории графов — вершинно 3-связный планарный граф.
В метрике теории графов выпуклым подграфом неориентированного графа G называется подграф, который включает любой кратчайший путь в G между любыми двумя вершинами. Таким образом, это аналогично определению выпуклого множества в геометрии — такое множество содержит отрезок, соединяющий любые две точки множества.

Подробнее: Выпуклый подграф
Бабочка имеет диаметр 2 и обхват 3, радиус 1, хроматическое число 3, хроматический индекс 4 и является как эйлеровым, так и графом единичных расстояний. Граф является вершинно 1-связным графом и рёберно 2-связным.
В теории графов outerplanar graph — это граф, допускающий планарную диаграмму, в которой все вершины принадлежат внешней грани.

Подробнее: Внешнепланарный граф
Неориентированный граф G двойственно хордален, если гиперграф его максимальных клик является гипердеревом. Имя происходит из факта, что граф хордален тогда и только тогда, когда гиперграф его максимальных клик двойственен гипердереву. Первоначально эти графы были определены по максимальному соседству и имеют ряд различных описаний. В отличие от хордальных графов свойство двойственной хордальности не наследуется, то есть, порождённые подграфы двойственного хордального графа не обязательно двойственно...
В теории графов свободный от t-биклик граф — это граф, в котором нет полных двудольных графов с 2t вершинами Kt,t в качестве подграфов. Семейство графов является свободным от биклик, если существует число t, такое, что все графы в семействе свободны от t-биклик. Семейства свободных от бициклов графов образуют одно из наиболее общих типов семейств разреженных графов. Они возникают в задачах инцидентности в комбинаторной геометрии, а также используются в теории параметрической сложности.
В теории графов рёберно-транзитивным графом называется граф G такой, что для любых двух рёбер e1 и e2 графа G, существует автоморфизм графа G, который отображает e1 в e2.

Подробнее: Рёберно-транзитивный граф
В теории графов граф называется хордальным, если каждый из его циклов, имеющих четыре ребра и более, имеет хорду (ребро, соединяющее две вершины цикла, но не являющееся его частью).
В теории графов граф сравнимости — это неориентированный граф, в котором пары элементов соединены ребром, если эти элементы сравнимы в некотором частичном порядке. Графы сравнимости также называют транзитивно-ориентируемыми графами, частично упорядочиваемыми графами и графами вложенности.
Автоморфизм графа есть отображение множества вершин на себя, сохраняющее смежность. Множество таких автоморфизмов образует вершинную группу графа или просто группу графа. Группа подстановок на множестве ребер называется реберной группой графа, которая тесно связана с вершинной...
В теории графов петерсеново семейство графов — это набор из семи неориентированных графов, включающий граф Петерсена и полный граф K6. Петерсеново семейство названо именем датского математика Юлиуса Петерсена, поскольку в набор входит граф Петерсена.
Расщепляемый граф может иметь несколько разложений на клику и независимое множество. Так, путь a-b-c является расщепляемым и может быть разбит тремя разными способами...
Голова быка — планарный неориентированный граф с 5 вершинами и 5 рёбрами в форме треугольника с двумя непересекающимися висячими рёбрами.
В теории графов верхушечный граф — это граф, который можно сделать планарным удалением одной вершины. Удалённая вершина называется верхушкой графа. Заметим, что верхушка может быть не одна. Например, в минимальном непланарном графе K5 или K3,3 каждая вершина является верхушкой. Верхушечные графы включают изначально планарные графы, в которых каждая вершина является верхушкой. Нуль-граф считается также верхушечным, хотя в нём нет вершин для удаления...
Сильная гипотеза о совершенных графах — это характеризация запрещёнными графами совершенных графов как в точности тех графов, которые не имеют ни нечётных дыр (порождённых циклов нечётной длины), ни нечётных антидыр (дополнений нечётным дырам). Гипотезу высказал Берж в 1961. Доказательство Марии Чудновской, Нила Робертсона, Пола Сеймура и Робина Томаса было заявлено в 2002 и опубликовано ими в 2006.
В теории графов декомпозиция на ветви неориентированного графа G — это иерархическая кластеризация рёбер графа G, представленная некорневым бинарным деревом T с рёбрами из G в качестве листьев. Удаление любого ребра из T делит рёбра графа G на два подграфа, а шириной декомпозиции считается максимальное число общих вершин в любом подграфе, полученным таким образом.
Фактор-критический граф (или почти сочетаемый граф .) — это граф с n вершинами, в котором каждый подграф с n − 1 вершинами имеет совершенное паросочетание. (Совершенное паросочетание в графе — это подмножество рёбер со свойством, что каждая из вершин графа является конечной вершиной в точности одного ребра из подмножества.)
В теории графов паросочетание или независимое множество рёбер в графе — это набор попарно несмежных рёбер.
В теории графов граф призмы — это граф, имеющий одну из призм в качестве скелета.
В теории графов число Хадвигера неориентированного графа G — это размер наибольшего полного графа, который может быть получен стягиванием рёбер графа G.
Порождённый подграф графа — это другой граф, образованный из подмножества вершин графа вместе со всеми рёбрами, соединяющими пары вершин из этого подмножества.
Теорема Понтрягина — Куратовского, или теорема Куратовского, — теорема в теории графов, дающая необходимое и достаточное условие планарности графа.
В теории графов рёберным графом L(G) неориентированного графа G называется граф L(G), представляющий соседство рёбер графа G.

Подробнее: Рёберный граф
Срединный граф — граф, представляющий рёбра смежности внутри граней заданного планарного графа.
Древесность неориентированного графа — это минимальное число лесов, на которые можно разложить рёбра. Эквивалентно это является минимальным числом остовных деревьев, которые необходимы для покрытия рёбер графа.
В теории графов корневым графом называется граф, в котором одна вершина помечена, чтобы отличать её от других вершин. Эту специальную вершину называют корнем графа:454.

Подробнее: Корневой граф
Однозначно раскрашиваемый граф — это k-цветный граф, допускающий только одну (правильную) k-раскраску (с точностью до перестановки цветов).
В теории графов снарки «Цветы» образуют бесконечное семейство снарков, введённых Айзексом Руфусом в 1975 году.

Подробнее: Снарк «Цветок»
Задача изоморфизма порождённому подграфу является NP-полной задачей разрешимости в теории сложности и теории графов. Задача заключается в поиске данного графа как порождённого подграфа другого, большего графа.
Кубический граф — граф, в котором все вершины имеют степень три. Другими словами, кубический граф является 3-регулярным. Кубические графы называются также тривалентными.
В теории графов графом гиперкуба Qn называется регулярный граф с 2n вершинами, 2n−1n рёбрами и n рёбрами, сходящимися в одной вершине. Его можно получить как одномерный скелет геометрического гиперкуба. Например, Q3 — это граф, образованный 8 вершинами и 12 рёбрами трёхмерного куба. Граф можно получить другим образом, отталкиваясь от семейства подмножеств множества с n элементами путём использования в качестве вершин все подмножества и соединением двух вершин ребром, если соответствующие множества...

Подробнее: Граф гиперкуба
В теории графов под графом Клебша понимается один из двух дополняющих друг друга графов, имеющих 16 вершин. Один из них имеет 40 рёбер и является 5-регулярным графом, другой имеет 80 рёбер и является 10-регулярным графом. 80-рёберный вариант — это половинный граф куба 5-го порядка. Назван графом Клебша в 1968 году Зайделем ввиду его связи с конфигурацией прямых поверхности четвёртого порядка, открытой 1868 году немецким математиком Альфредом Клебшем. 40-рёберный вариант – это складной граф куба...

Подробнее: Граф Клебша
Граф Аполлония — это неориентированный граф, образованный рекурсивным процессом подразделения треугольника на три меньших треугольника. Графы Аполлония можно эквивалентно определить как планарные 3-деревья, как максимальные планарные хордальные графы, как однозначно 4-раскрашиваемые планарные графы или как графы блоковых многогранников. Графы названы именем Аполлония Пергского, изучавшего связанные построения упаковки кругов.
Самодополнительный граф — это граф, изоморфный своему дополнению. Простейшие нетривиальные самодополнительные графы — это путь, состоящий из 4 вершин и цикл из 5 вершин.
Планарное накрытие конечного графа G — это конечный накрывающий граф графа G, являющийся планарным графом. Любой граф, который может быть вложен в проективную плоскость, имеет планарное накрытие. Нерешённая гипотеза Сэйи Негами утверждает, что только эти графы и имеют планарные накрытия.
Граф C является накрывающим графом другого графа G, если имеется накрывающее отображение из множества вершин C в множество вершин G. Накрывающее отображение f является сюръекцией и локальным изоморфизмом — окрестность вершины v в C отображается биективно в окрестность f(v) в G.
В топологической теории графов 1-планарный граф — граф, который может быть нарисован в евклидовой плоскости таким образом, что каждое ребро имеет максимум одно пересечение с единственным другим ребром.
Блоковый граф (кликовое дерево) — вид неориентированного графа, в котором каждая компонента двусвязности (блок) является кликой.
Теорема о совершенных графах Ловаша утверждает, что неориентированный граф является совершенным тогда и только тогда, когда его дополнение также совершенно. Это утверждение высказал в виде гипотезы Берж и утверждение называют иногда слабой теоремой о совершенных графах, чтобы не смешивать со строгой теоремой о совершенных графах, описывающей совершенные графы их запрещёнными порождёнными подграфами.
Критерий планарности Уитни — это матроидное описание планарных графов. Критерий носит имя Хасслера Уитни. Критерий утверждает, что граф G планарен тогда и только тогда, когда его графовый матроид является также кографовым (то есть является двойственным матроидом другого графового матроида).
В теории графов совершенным графом называется граф, в котором хроматическое число любого порождённого подграфа равно размеру максимальной клики этого подграфа. Благодаря строгой теореме о совершенных графах, с 2002 года известно, что совершенные графы — это то же самое, что и графы Бержа. Граф G является графом Бержа если ни G, ни его дополнение не имеет порождённых циклов нечётной длины (5 и более рёбер).

Подробнее: Совершенный граф
В теории графов говорят, что граф G гипогамильтонов, если сам по себе граф не имеет гамильтонова цикла, но любой граф, полученный удалением одной вершины из G, является гамильтоновым.

Подробнее: Гипогамильтонов граф
В теории графов короной с 2n вершинами называется неориентированный граф с двумя наборами вершин ui и vi и рёбрами между ui и vj, если i ≠ j. Можно рассматривать корону как полный двудольный граф, из которого удалено совершенное паросочетание, как двойное покрытие двудольным графом полного графа, или как двудольный граф Кнезера Hn,1, представляющий подмножества из 1 элемента и (n − 1) элементов множества из n элементов с рёбрами между двумя подмножествами, если одно подмножество содержится в другом...

Подробнее: Корона (теория графов)
В теории графов псевдолес — это неориентированный граф , в котором любая связная компонента имеет максимум один цикл. То есть это система вершин и рёбер, соединяющих пары вершин, такая, что никакие два цикла не имеют общих вершин и не могут быть связаны путём. Псевдодерево — это связный псевдолес.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я