Связанные понятия
Простая группа — группа, не имеющая нормальных подгрупп, отличных от всей группы и единичной подгруппы.
Гру́ппа Галуа ́ — группа, ассоциированная с расширением поля. Играет важную роль при исследовании расширений полей, в частности, в теории Галуа. Это понятие (в контексте группы перестановок корней многочлена) ввёл в математику Эварист Галуа в 1832 году.
Норма́льная подгру́ппа (также инвариа́нтная подгру́ппа или нормальный делитель) — подгруппа особого типа, левый и правый смежные классы по которой совпадают.
Коммутант в общей алгебре — подсистема алгебр, содержащих групповую структуру (подгруппа, подкольцо, в наиболее общем случае — подгруппа мультиоператорной группы), показывающая степень некоммутативности групповой операции.
Расшире́ние Галуа ́ — алгебраическое расширение поля E/K, являющееся нормальным и сепарабельным. При этих условиях E будет иметь наибольшее количество автоморфизмов над K (если E конечно, то количество автоморфизмов также конечно и равно степени расширения ).
Теоремы об изоморфизме в алгебре — ряд теорем, связывающих понятия фактора, гомоморфизма и вложенного объекта. Утверждением теорем является изоморфизм некоторой пары групп, колец, модулей, линейных пространств, алгебр Ли или прочих алгебраических структур (в зависимости от области применения). Обычно насчитывают три теоремы об изоморфизме, называемые Первой (также основная теорема о гомоморфизме), Второй и Третьей. Хотя подобные теоремы достаточно легко следуют из определения фактора и честь их открытия...
В математике свободная абелева группа (свободный Z-модуль) — это абелева группа, имеющая базис, то есть такое подмножество элементов группы, что для любого её элемента существует единственное его представление в виде линейной комбинации базисных элементов с целыми коэффициентами, из которых только конечное число являются ненулевыми. Элементы свободной абелевой группы с базисом B называют также формальными суммами над B. Свободные абелевы группы и формальные суммы используются в алгебраической топологии...
Факторкольцо ́ — общеалгебраическая конструкция, позволяющая распространить на случай колец конструкцию факторгруппы. Любое кольцо является группой по сложению, поэтому можно рассмотреть её подгруппу и взять факторгруппу. Однако для того, чтобы на этой факторгруппе можно было корректно определить умножение, необходимо, чтобы исходная подгруппа была замкнута относительно умножения на произвольные элементы кольца, то есть являлась идеалом.
Проективная группа — группа преобразований проективного пространства, индуцируемых линейными преобразованиями соответствующего векторного пространства. Её элементы называются проективными преобразованиями — они обобщают проективные преобразования проективной плоскости. С матричной точки зрения проективная группа — это группа всех невырожденных матриц с точностью до скалярных матриц.
Представле́ние гру́ппы (точнее, линейное представление группы) — гомоморфизм заданной группы в группу невырожденных линейных преобразований векторного пространства.
Группа классов идеалов дедекиндова кольца — это, грубо говоря, группа, позволяющая сказать, насколько сильно в данном кольце нарушается свойство факториальности. Эта группа тривиальна тогда и только тогда, когда дедекиндово кольцо является факториальным. Свойства дедекиндова кольца, касающиеся умножения его элементов, тесно связаны с устройством этой группы.
Кольцо многочленов — кольцо, образованное многочленами от одной или нескольких переменных с коэффициентами из другого кольца. Изучение свойств колец многочленов оказало большое влияние на многие области современной математики; можно привести примеры теоремы Гильберта о базисе, конструкции поля разложения и изучения свойств линейных операторов.
Топологи́ческая гру́ппа (непрерывная группа) — это группа, которая одновременно является топологическим пространством, причём умножение элементов группы G × G → G и операция взятия обратного элемента G...
Внутренний автоморфизм — это вид автоморфизма группы, определённый в терминах фиксированного элемента группы, называемого сопрягающим элементом. Формально, если G — группа, а a — элемент группы G, то внутренний автоморфизм, определённый элементом a — это отображение f из G в себя, определённое для всех x из G по формуле...
Гру́ппа в математике — множество, на котором определена ассоциативная бинарная операция, причём для этой операции имеется нейтральный элемент (аналог единицы для умножения), и каждый элемент множества имеет обратный. Ветвь общей алгебры, занимающаяся группами, называется теорией групп.
Алгебра над кольцом — алгебраическая система, которая является одновременно модулем над этим кольцом и кольцом сама по себе, причём эти две структуры взаимосвязаны. Понятие алгебры над кольцом является обобщением понятия алгебры над полем, аналогично тому как понятие модуля обобщает понятие векторного пространства.
Алгебра над полем — это векторное пространство, снабженное билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.
Проекти́вный мо́дуль — одно из основных понятий гомологической алгебры. С точки зрения теории категорий, проективные модули являются частным случаем проективных объектов.
Упорядоченное поле — алгебраическое поле, для всех элементов которого определён линейный порядок, согласованный с операциями поля. Наиболее практически важными примерами являются поля рациональных и вещественных чисел.
Нейтра́льный элеме́нт бинарной операции — элемент, который оставляет любой другой элемент неизменным при применении этой бинарной операции к этим двум элементам.
Связное пространство — непустое топологическое пространство, которое невозможно разбить на два непустых непересекающихся открытых подмножества.
В математике централизатор подмножества S группы G — это множество элементов G, которые коммутируют с каждым элементом S, а нормализатор S — это множество элементов G, которые коммутируют с S «в целом». Централизатор и нормализатор S являются подгруппами G и могут пролить свет на структуру G.
Действие группы на некотором множестве объектов позволяет изучать симметрии этих объектов с помощью аппарата теории групп.
Свобо́дный мо́дуль — модуль F над кольцом R (как правило, считаемым ассоциативным c единичным элементом), если он либо является нулевым, либо обладает базисом, то есть непустой системой S элементов e1,…ei…, которая является линейно независимой и порождает F. Само кольцо R, рассматриваемое как левый модуль над собой, очевидно обладает базисом, состоящим из одного единичного элемента кольца, а каждый модуль с конечным базисом из n элементов изоморфен прямой сумме Rn колец R, рассматриваемых как модули...
Изоморфизм групп — взаимно-однозначное соответствие между элементами двух групп, сохраняющее групповые операции.
Обра́тный элеме́нт — термин в общей алгебре, обобщающий понятия обратного числа (для умножения) и противоположного числа (для сложения).
Характеристика (кольца или поля) — числовая величина, используемая в общей алгебре для описания некоторых свойств этих...
Идеал — одно из основных понятий общей алгебры. Наибольшее значение идеалы имеют в теории колец, но также определяются и для полугрупп, алгебр и некоторых других алгебраических структур. Название «идеал» ведёт своё происхождение от «идеальных чисел», которые были введены в 1847 году немецким математиком Э. Э. Куммером. Простейшим примером идеала может служить подкольцо чётных чисел в кольце целых чисел. Идеалы дают удобный язык для обобщения результатов теории чисел на общие кольца.
Абелева категория — категория, в которой морфизмы можно складывать, а ядра и коядра существуют и обладают определёнными удобными свойствами. Пример, который стал прототипом абелевой категории — категория абелевых групп. Теория абелевых категорий была разработана Александром Гротендиком для объединения нескольких теорий когомологий. Класс абелевых категорий замкнут относительно нескольких категорных конструкций; например, категория цепных комплексов с элементами из абелевой категории и категория функторов...
Коммутативное кольцо — кольцо, в котором операция умножения коммутативна (обычно также подразумевается её ассоциативность и существование единицы). Изучением свойств коммутативных колец занимается коммутативная алгебра.
Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно однозначным отображением (соответствием), одно-однозначным отображением.
Алгебраическая группа — это группа, являющаяся одновременно алгебраическим многообразием, причём групповая операция и операция взятия обратного элемента являются регулярными отображениями многообразий.
Сепара́бельное пространство (от лат. separabilis — отделимый) — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Полная линейная группа векторного пространства V — это группа обратимых линейных операторов вида C: V → V. Роль групповой операции играет обычная композиция линейных операторов.
Фраза
группа лиева типа обычно означает конечную группу, которая тесно связана с группой рациональных точек редуктивной линейной алгебраической группы со значениями в конечном поле. Термин «группа лиева типа» не имеет общепризнанного точного определения, но важный набор конечных простых групп лиева типа точное определение имеет и они составляют большинство групп в классификации простых конечных групп.
Локальные кольца — кольца, которые относительно просты и позволяют описывать «локальное поведение» функций на алгебраическом многообразии или обычном многообразии. Раздел коммутативной алгебры, изучающий локальные кольца и модули над ними, называется локальной алгеброй.
Подробнее: Локальное кольцо
Коне́чноме́рное простра́нство — это векторное пространство, в котором имеется конечный базис — порождающая (полная) линейно независимая система векторов. Другими словами, в таком пространстве существует конечная линейно независимая система векторов, линейной комбинацией которых можно представить любой вектор данного пространства.
Инволюция (от лат. involutio — свёртывание, завиток) — преобразование, которое является обратным самому себе.
Область целостности (или целостное кольцо, или область цельности или просто область) — понятие коммутативной алгебры: ассоциативное коммутативное кольцо с единицей (нейтральным элементом относительно умножения) и без делителей нуля (произведение никакой пары ненулевых элементов не равно 0).
Разбие́ние мно́жества — это представление его в виде объединения произвольного количества попарно непересекающихся подмножеств.
Систе́ма корне́й (корнева́я систе́ма) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам.
Одноро́дный многочле́н — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Квадратичная форма задается однородным многочленом второй степени, бинарная форма - однородным многочленом любой степени от двух переменных.
По́ле в общей алгебре — множество, для элементов которого определены операции сложения, взятия противоположного значения, умножения и деления (кроме деления на нуль), причём свойства этих операций близки к свойствам обычных числовых операций. Простейшим полем является поле рациональных чисел (дробей). Хотя названия операций поля взяты из арифметики, следует иметь в виду, что элементы поля не обязательно являются числами, и определения операций могут быть далеки от арифметических.
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Целая функция — функция, регулярная во всей комплексной плоскости. Типичным примером целой функции может служить многочлен или экспонента, а также суммы, произведения и суперпозиции этих функций. Ряд Тейлора целой функции сходится во всей плоскости комплексного переменного. Логарифм, квадратный корень не являются целыми функциями.
Аффи́нное простра́нство — математический объект (пространство), обобщающий некоторые свойства евклидовой геометрии. В отличие от векторного пространства, аффинное пространство оперирует с объектами не одного, а двух типов: «векторами» и «точками».