Связанные понятия
Кинема́тика (греч. κινειν — двигаться) в физике — раздел механики, изучающий математическое описание (средствами геометрии, алгебры, математического анализа…) движения идеализированных тел (материальная точка, абсолютно твердое тело, идеальная жидкость), без рассмотрения причин движения (массы, сил и т. д.). Исходные понятия кинематики — пространство и время. Например, если тело движется по окружности, то кинематика предсказывает необходимость существования центростремительного ускорения без уточнения...
Дина́мика (греч. δύναμις «сила, мощь») — раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, момент импульса, энергия.
Абсолю́тно твёрдое те́ло — второй опорный объект механики наряду с материальной точкой. Механика абсолютно твёрдого тела полностью сводима к механике материальных точек (с наложенными связями), но имеет собственное содержание (полезные понятия и соотношения, которые могут быть сформулированы в рамках модели абсолютно твёрдого тела), представляющее большой теоретический и практический интерес.
Кинема́тика твёрдого тела (от др.-греч. κίνημα — движение) — раздел кинематики, изучающий движение абсолютно твёрдого тела, не вдаваясь в вызывающие его причины.
Механи́ческим движе́нием тела называется изменение его положения в пространстве относительно других тел с течением времени. При этом тела взаимодействуют по законам механики.
Подробнее: Механическое движение
Упоминания в литературе
1) Физический мир – трехмерный, это то, что в
статике , самое грубое, материальное проявление энергии. Он соответствует Муладхаре и нашей устойчивости в физическом мире. Если человек начинает фиксироваться здесь и описывать себя по Муладхаре, то будет устойчив физически и психологически, но при этом ум будет фиксироваться только на информации от физического мира – кто мы такие, без фиксации на других людях. Это в магии нужно делать, но это не интересно.
Для того чтобы вся последующая работа была эффективной, а поставленная задача решена, с этого уровня исследований вы должны научиться смотреть на себя как на неживую проекцию, программу. Для того чтобы увидеть программу в действии, нужно наблюдать её во времени, и вы делали это, работая с каузальным телом. Но для того, чтобы понять, как она устроена, нужно прекратить её действие, остановить процессы и постараться посмотреть на неё в
статике , сопоставив увиденное со схемой. В реале это сделать очень сложно, практически невозможно, как невозможно остановить процессы жизнедеятельности без риска, что они не возобновятся. Поэтому систему свою вы будете рассматривать в виде слепков, отпечатков, которые она оставляет после себя. Логика подсказывает, что по одному слепку очень трудно определить полноту системы. Поэтому таких отпечатков должно быть выявлено очень много – только тогда система будхиального тела раскроется перед вами во всей своей полноте.
Динамическая система, чтобы существовать, должна развиваться, а чтобы развиваться, должна сочетать устойчивость с неустойчивостью. Одна из наиболее распространенных форм нашего мышления – тяготение к привычным, застывшим схемам решения задач, поведение
статики .
Если для нас сегодня описание кристаллических структур является не более чем наглядной иллюстрацией некоторого общего свойства материального мира, то для Е. Федорова соображения философского и общесистемного характера были продуктом побочным – его интересовали именно кристаллы. Тем не менее теория Федорова заложила основы
статики в Теории организации, то есть изучения стабильных структурных форм материи.
Если для Е. С. Федорова наиболее важным было изучение структуры кристаллов, а соображения общесистемного характера были у него, так сказать, «побочным» продуктом исследований, то А. А. Богданов стремился исследовать прежде всего именно общие принципы организации материального мира. Теория Е. С. Федорова заложила основы
статики в теории организации, т. е. изучения стабильных структурных форм. Теория А. А. Богданова ставила своей целью изучение динамики организационных форм, т. е. изучение характера их изменения под действием внешних и внутренних факторов. Иными словами, если Е. С. Федоров рассматривал организацию как неизменное свойство, присущее данному объекту, то А. А. Богданов на обширном материале из разных областей естествознания и обществоведения показывал существование закономерностей в изменении организационных структур, общих для явлений самой разной природы.
Однако есть более фундаментальные типы колебаний – колебания типов процессуальности в одном объекте в процессе его развития. Например, переход от
статики к динамике, от функционирования к индивидуальному развитию, от одного к другому виду индивидуального развития, от одного к другому виду исторического развития и т. д.
Динамика и
статика объектов восприятия. Ранние представления о приоритетном восприятии неподвижных предметов подверглись радикальной корректировке. Выяснилось, что зрительная детекция динамичных объектов предшествует (как в филогенезе, так и онтогенезе) аналогичному обнаружению стационарных объектов.
Все теоремы и уравнения
статики выводятся из нескольких исходных положений, называемых аксиомами.
Связанные понятия (продолжение)
Механической связью называют ограничения, накладываемые на координаты и скорости механической системы, которые должны выполняться на любом её движении.
Подробнее: Механическая связь
Принципами механики называются исходные положения, отражающие столь общие закономерности механических явлений, что из них как следствия можно получить все уравнения, определяющие движение механической системы (или условия её равновесия). В ходе развития механики был установлен ряд таких принципов, каждый из которых может быть положен в основу механики, что объясняется многообразием свойств и закономерностей механических явлений. Эти принципы подразделяют на невариационные и вариационные.
Подробнее: Вариационные принципы
Неголономная система — механическая система, на которую, кроме геометрических, накладываются и кинематические связи, которые нельзя свести к геометрическим (их называют неголономными). Математически неголономные связи выражаются неинтегрируемыми уравнениями. Движение неголономной системы описывается с помощью специальных уравнений движения (уравнения Чаплыгина, Аппеля, Маджи) или уравнений движения, получаемых из вариационных принципов.
В математике решение дифференциального уравнения (или, шире, траектория в фазовом пространстве точки состояния динамической системы) называется устойчивым, если поведение решений, с условиями, близкими к начальным, «не сильно отличается» от поведения исходного решения. Слова «не сильно отличается» при этом можно формализовать по-разному, получая разные формальные определения устойчивости: устойчивость по Ляпунову, асимптотическую устойчивость и т.д. (см. ниже). Обычно рассматривается задача об устойчивости...
Подробнее: Устойчивость (динамические системы)
Стереометрия (от др.-греч. στερεός, «стереос» — «твёрдый, объёмный, пространственный» и μετρέω, «метрео» — «измеряю») — раздел евклидовой геометрии, в котором изучаются свойства фигур в пространстве. Основными (простейшими) фигурами в пространстве являются точки, прямые и плоскости.
Физическое тело (те́ло в физике или физический объект; англ. physical body) — материальный объект, имеющий постоянные: массу, форму (причём, как правило, простую), а также соответствующий ей объём; и отделенный от других тел внешней границей раздела. Широко используется в классической механике.
Ве́кторное исчисле́ние — раздел математики, в котором изучаются свойства операций над векторами. В связи с разнообразием особенностей векторов, зависящих от пространства, в котором они исследуются, векторное исчисление подразделяется на...
Тела вращения — объёмные тела, возникающие при вращении плоской геометрической фигуры, ограниченной кривой, вокруг оси, лежащей в той же плоскости.
Теория устойчивости — техническая и физико-математическая дисциплина, изучающая закономерности поведения систем под действием внешних воздействий.
Ине́рция (от лат. inertia — бездеятельность, синоним: инертность) — свойство тела оставаться в некоторых системах отсчёта в состоянии покоя или равномерного прямолинейного движения в отсутствие внешних воздействий, а также препятствовать изменению своей скорости (как по модулю, так и по направлению) при наличии внешних сил.
Механи́ческое равнове́сие — состояние механической системы, при котором сумма всех сил, действующих на каждую её частицу, равна нулю и сумма моментов всех сил, приложенных к телу относительно любой произвольно взятой оси вращения, также равна нулю.
Идеа́льная жи́дкость — в гидродинамике — воображаемая жидкость (сжимаемая или несжимаемая), в которой отсутствуют вязкость и теплопроводность. Так как в ней отсутствует внутреннее трение, то нет касательных напряжений между двумя соседними слоями жидкости.
Анализ размерности (чаще говорят «соображения размерности» или «метрические соображения») — инструмент, используемый в физике, химии, технике и нескольких направлениях экономики для построения обоснованных гипотез о взаимосвязи различных параметров сложной системы. Неоднократно применялся физиками на интуитивном уровне не позже XIX века.
При рассмотрении сложного движения (когда точка или тело движется в одной системе отсчёта, а эта система отсчёта в свою очередь движется относительно другой системы) возникает вопрос о связи скоростей в двух системах отсчёта.
Подробнее: Сложение скоростей
Простейшие механизмы — устройства, служащие для преобразования направления и величины (модуля) силы. Представляют собой элементы более сложных механизмов. Некоторые из простейших механизмов появились в глубокой древности.
Подробнее: Простейший механизм
Сплошна́я среда ́ — механическая система, обладающая бесконечным числом внутренних степеней свободы. Её движение в пространстве, в отличие от других механических систем, описывается не координатами и скоростями отдельных частиц, а скалярным полем плотности и векторным полем скоростей. В зависимости от задач, к этим полям могут добавляться поля других физических величин (концентрация, температура, поляризованность и др.)
Те́ло геометри́ческое — «то, что имеет длину, ширину и глубину» в «Началах» Евклида, в учебниках элементарной геометрии ко всему «часть пространства, ограниченная своей образуемой формой».
Меха́ника сплошны́х сред — раздел механики, физики сплошных сред и физики конденсированного состояния, посвящённый движению газообразных, жидких и деформируемых твёрдых тел, а также силовым взаимодействиям в таких телах.
Ма́ятник — система, подвешенная в поле тяжести и совершающая механические колебания. Колебания совершаются под действием силы тяжести, силы упругости и силы трения. Во многих случаях трением можно пренебречь, а от сил упругости (либо сил тяжести) абстрагироваться, заменив их связями.
Уравне́ние движе́ния (уравнения движения) — уравнение или система уравнений, задающие закон эволюции механической или динамической системы (например, поля) во времени и пространстве.
Си́ла — физическая векторная величина, являющаяся мерой воздействия на данное тело со стороны других тел или полей. Приложение силы обусловливает изменение скорости тела или появление деформаций и механических напряжений.
Си́ла ине́рции (также инерционная сила) — многозначное понятие, применяемое в механике по отношению к трём различным физическим величинам. Одна из них — «даламберова сила инерции» — вводится в инерциальных системах отсчёта для получения формальной возможности записи уравнений динамики в виде более простых уравнений статики. Другая — «эйлерова сила инерции» — используется при рассмотрении движения тел в неинерциальных системах отсчёта. Наконец, третья — «ньютонова сила инерции» — сила противодействия...
Теория потенциала — раздел математики и математической физики, посвящённый изучению свойств дифференциальных уравнений в частных производных в областях с достаточно гладкой границей посредством введения специальных видов интегралов, зависящих от определённых параметров, называемых потенциалами.
Деформи́руемое те́ло (англ. deformable body) — физическое тело, способное к деформации, то есть тело, способное изменить свою форму, внутреннюю структуру, объём, площадь поверхности под действием внешних сил. Относительная позиция любых составных точек деформируемого тела может изменяться. Деформируемые тела являются противоположностью абсолютно твёрдых тел, которые определены их элементами. Идеальным представлением деформируемого тела является бесконечное количество частиц, наполняющих его.
Метод исчерпывания (лат. methodus exaustionibus) — античный математический метод, предназначенный для исследования площадей криволинейных геометрических фигур или объёмов геометрических тел. Идею метода, в не очень ясных выражениях, высказал ещё Антифон, однако разработку и применение осуществил Евдокс Книдский. Обоснование этого метода не опирается на понятие бесконечно малых, но неявно включает понятие предела. Название «метод исчерпывания» предложил в 1647 году Грегуар де Сен-Венсан, в античные...
Физи́ческий зако́н — эмпирически установленная и выраженная в строгой словесной и/или математической формулировке устойчивая, повторяющаяся во множестве опытов, связь между физическими величинами в повторяющихся явлениях, процессах и состояниях тел и других материальных объектов в окружающем мире.
Динами́ческий ха́ос — явление в теории динамических систем, при котором поведение нелинейной системы выглядит случайным, несмотря на то, что оно определяется детерминистическими законами. В качестве синонима часто используют название детерминированный хаос; оба термина полностью равнозначны и используются для указания на существенное отличие хаоса как предмета научного изучения в синергетике от хаоса в обыденном смысле.
Теоре́ма о сложе́нии скоросте́й — одна из теорем кинематики, связывает между собой скорости материальной точки в различных системах отсчёта. Утверждает, что при сложном движении материальной точки её абсолютная скорость равна сумме относительной и переносной скоростей.
Макроскопи́ческий масшта́б представляет собой масштаб длины, на котором объекты или процессы имеют размеры, поддающиеся измерению и наблюдению невооруженным глазом.
В физике, при рассмотрении нескольких систем отсчёта (СО), возникает понятие сложного движения — когда материальная точка движется относительно какой-либо системы отсчёта, а та, в свою очередь, движется относительно другой системы отсчёта. При этом возникает вопрос о связи движений точки в этих двух системах отсчета (далее СО).
Подробнее: Сложное движение
При́нцип наиме́ньшего де́йствия Га́мильтона (также просто принцип Гамильтона), точнее при́нцип стациона́рности де́йствия — способ получения уравнений движения физической системы при помощи поиска стационарного (часто — экстремального, обычно, в связи со сложившейся традицией определения знака действия, наименьшего) значения специального функционала — действия. Назван в честь Уильяма Гамильтона, использовавшего этот принцип для построения так называемого гамильтонова формализма в классической механике...
Класси́ческая меха́ника — вид механики (раздела физики, изучающего законы изменения положений тел в пространстве со временем и причины, его вызывающие), основанный на законах Ньютона и принципе относительности Галилея. Поэтому её часто называют «ньютоновой механикой».
Физическая система — объект физических исследований, такое множество взаимосвязанных элементов, отделённых от окружающей среды, что взаимодействует с ней, как целое. При этом под элементами следует понимать физические тела или другие физические системы. Взаимодействие физической системы с окружением, а также связь между отдельными составляющими физической системы реализуется с помощью фундаментальных физических взаимодействий (гравитация, электромагнитное взаимодействие, сильное взаимодействие, слабое...
Аналитическая механика — раздел теоретической механики и теоретической физики, в котором формулируются и используются общие принципы (дифференциальные или интегральные) механики, на их основе выводятся основные дифференциальные уравнения движения, исследуются сами уравнения и методы их интегрирования.
Интегральное исчисление — раздел математического анализа, в котором изучаются понятия интеграла, его свойства и методы вычислений.
Объём — это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении тел трёхмерного евклидова пространства.
Си́ла упру́гости — сила, возникающая в теле в результате его деформации и стремящаяся вернуть его в исходное (начальное) состояние.
Тео́рия пласти́чности — раздел механики сплошных сред, задачами которого является определение напряжений и перемещений в деформируемом теле за пределами упругости. Строго говоря, в теории пластичности предполагается, что напряжённое состояние зависит только от пути нагружения в пространстве деформаций и не зависят от скорости этого нагружения. Учёт скорости нагружения возможен в рамках более общей теории вязкопластичности.
Изотропность пространства означает, что в пространстве нет какого-то выделенного направления, относительно которого существует «особая» симметрия, все направления равноправны.
Эта статья о физическом понятии. О более общем значении термина, см. статью СкалярСкалярная величина (от лат. scalaris — ступенчатый) в физике — величина, каждое значение которой может быть выражено одним действительным числом. То есть скалярная величина определяется только значением, в отличие от вектора, который кроме значения имеет направление. К скалярным величинам относятся длина, площадь, время, температура и т. д.Скалярная величина, или скаляр согласно математическому энциклопедическому словарю...
Подробнее: Скалярная величина
Наклонная плоскость — это плоская поверхность, установленная под углом к горизонтали. Наклонная плоскость является одним из простых механизмов. Она позволяет поднимать груз вверх, прикладывая к нему усилие, заметно меньшее, чем сила тяжести, действующая на этот груз.
Инвариа́нт в физике — физическая величина или соотношение, значение которого в некотором физическом процессе не изменяется с течением времени. Примеры: энергия, компоненты импульса и момента импульса в замкнутых системах.
Математи́ческая моде́ль — математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.
Спор о струне , спор о колеблющейся струне, спор о звучащей струне — научная дискуссия, развернувшаяся в XVIII веке между крупнейшими учёными того времени вокруг изучения колебаний струны. В спор оказались вовлечены Д’Аламбер, Эйлер, Д. Бернулли, Лагранж. Дискуссия касалась определения понятия функции и оказала решающее влияние на множество разделов математики: теорию дифференциальных уравнений в частных производных, математический анализ и теорию функций вещественного переменного, теорию тригонометрических...
Релятивистская механика — раздел физики, рассматривающий законы механики (законы движения тел и частиц) при скоростях, сравнимых со скоростью света. При скоростях значительно меньших скорости света переходит в классическую (ньютоновскую) механику.