Связанные понятия
В теории графов ориентированный граф может содержать ориентированные циклы, кольцо дуг, имеющих одно направление. В некоторых приложениях такие циклы нежелательны, мы можем исключить их и получить направленный ациклический граф (Directed Acyclic Graph, DAG). Один из способов исключения дуг — просто удаление дуг из графа. Разрезающий циклы набор дуг (Feedback Arc Set, FAS) или разрезающий циклы набор рёбер — это множество дуг, которые, при удалении их из графа, образуют DAG. Рассматривая под другим...
Подробнее: Разрезающий циклы набор рёбер
Задача о гамильтоновом пути и задача о гамильтоновом цикле — это задачи определения, существует ли гамильтонов путь (путь в неориентированном или ориентированном графе, который проходит все вершины графа ровно один раз) или гамильтонов цикл в заданном графе (ориентированном или неориентированном). Обе задачи NP-полны.
Задача поиска изоморфного подграфа — это вычислительная задача, в которой входом являются два графа G и H и нужно определить, не содержит ли G подграф, изоморфный графу H.
Направленный ациклический граф (ориентированный ациклический граф, DAG от англ. directed acyclic graph) — орграф, в котором отсутствуют направленные циклы, но могут быть «параллельные» пути, выходящие из одного узла и разными путями приходящие в конечный узел. Направленный ациклический граф является обобщением дерева (точнее, их объединения — леса).
Минимальное остовное дерево (или минимальное покрывающее дерево) в связанном взвешенном неориентированном графе — это остовное дерево этого графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер.
Итеративное сжатие — это алгоритмическая техника разработки фиксированно-параметрически разрешимых алгоритмов, в которой один элемент (такой как вершина графа) добавляется в задачу на каждом шаге и используется небольшое решение задачи перед добавлением элемента, чтобы найти небольшое решение задачи после добавления.
Поиск в ширину (англ. breadth-first search, BFS) — метод обхода графа и поиска пути в графе. Поиск в ширину является одним из неинформированных алгоритмов поиска.
Периферийный цикл в неориентированном графе является, интуитивно, циклом, который не отделяет любую часть графа от любой другой части. Периферийные циклы (или, как они сначала назывались, периферийные многоугольники, поскольку Тат называл циклы «многоугольниками»), первым изучал Тат и они играют важную роль в описании планарных графов и в образовании циклических пространств непланарных графов.
В теории графов стягивание ребра — это операция, которая удаляет ребро из графа, а до этого связанные ребром вершины сливаются в одну вершину. Стягивание ребра является фундаментальной операцией в теории о минорах графов. Отождествление вершин — другая форма этой операции с более слабыми ограничениями.
Алгоритм Эдмондса или алгоритм Чу — Лью/Эдмондса — это алгоритм поиска остовного ориентированного корневого дерева минимального веса (иногда называемого оптимальным ветвлением).
Орграф называется сильно связным (англ. strongly connected), если любые две его вершины сильно связны. Две вершины s и t любого графа сильно связны, если существует ориентированный путь из s в t и ориентированный путь из t в s.
Подробнее: Компонента сильной связности в орграфе
Геометрический остов (англ. geometric spanner) или t-остовной граф, или t-остов первоначально был введён как взвешенный граф на множестве точек в качестве вершин, для которого существует t-путь между любой парой вершин для фиксированного параметра t. t-Путь определяется как путь в графе с весом, не превосходящим в t раз пространственное расстояние между конечными точками. Параметр t называется коэффициентом растяжения остова.
Восходящее планарное представление направленного ациклического графа — это вложение графа в евклидово пространство, в котором рёбра представлены как непересекающиеся монотонно возрастающие кривые. То есть, кривая, представляющая любое ребро, должна иметь свойство, что любая горизонтальная прямая пересекает его максимум в одной точке, и никакие два ребра не могут пересекаться, разве что на концах. В этом смысле это идеальный случай для послойного рисования графа, стиля представления графа, в котором...
Задача о самом широком пути — это задача нахождения пути между двумя выбранными вершинами во взвешенном графе, максимизирующего вес минимального по весу ребра графа (если рассматривать вес ребра как ширину дороги, то задача стоит в выборе самой широкой дороги, связывающей две вершины). Задача о самом широком пути известна также как задача об узком месте или задача о пути с максимальной пропускной способностью. Можно приспособить алгоритмы кратчайшего пути для вычисления пропускной способности путём...
Задача о вершинном покрытии — NP-полная задача информатики в области теории графов. Часто используется в теории сложности для доказательства NP-полноты более сложных задач.
Кососимметрический граф — это ориентированный граф, который изоморфен своему собственному транспонированному графу, графу, образованному путём обращения всех дуг, с изоморфизмом, который является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
В теории графов
глубина дерева связного неориентированного графа G — это числовой инвариант G, минимальная высота дерева Тремо для суперграфа графа G. Этот инвариант и близкие понятия встречаются под различными именами в литературе, включая число ранжирования вершин, упорядоченное хроматическое число и минимальная высота исключения дерева. Понятие близко также к таким понятиям, как циклический ранг ориентированных графов и высота итерации языка регулярных языков ; . Интуитивно, если древесная ширина...
Алгоритм распространения доверия (англ. belief propagation, также алгоритм «sum-product») — алгоритм маргинализации с помощью двунаправленной передачи сообщений на графе, применяемый для вывода на графических вероятностных моделях (таких как байесовские и марковские сети). Предложен Дж. Перлом в 1982 году.
Число пересечений графа — наименьшее число элементов в представлении данного графа как графа пересечений конечных множеств, или, эквивалентно, наименьшее число клик, необходимых для покрытия всех рёбер графа.
Поиск в глубину (англ. Depth-first search, DFS) — один из методов обхода графа. Стратегия поиска в глубину, как и следует из названия, состоит в том, чтобы идти «вглубь» графа, насколько это возможно. Алгоритм поиска описывается рекурсивно: перебираем все исходящие из рассматриваемой вершины рёбра. Если ребро ведёт в вершину, которая не была рассмотрена ранее, то запускаем алгоритм от этой нерассмотренной вершины, а после возвращаемся и продолжаем перебирать рёбра. Возврат происходит в том случае...
Косое разбиение графа — это разбиение его вершин на два подмножества, такое что порождённый подграф, образованный одним из его подмножеств вершин является несвязным, а другой порождённый подграф, образованный другим подмножеством является дополнением несвязного графа. Косые разбиения играют важную роль в теории совершенных графов.
Топологическая сортировка — упорядочивание вершин бесконтурного ориентированного графа согласно частичному порядку, заданному ребрами орграфа на множестве его вершин.
Остовное дерево графа состоит из минимального подмножества рёбер графа, таких, что из любой вершины графа можно попасть в любую другую вершину, двигаясь по этим рёбрам.
Модульное разложение — это разложение графа на подмножества вершин, называемых модулями. Модуль является обобщением компоненты связности графа. В отличие от компонент связности, однако, один модуль может быть собственным подмножеством другого. Модули, поэтому, ведут к рекурсивной (иерархической) декомпозиции графа, а не просто к разбиениям.
Задача о самом длинном пути — это задача поиска простого пути максимальной длины в заданном графе. Путь называется простым, если в нём нет повторных вершин. Длина пути может быть измерена либо числом рёбер, либо (в случае взвешенных графов) суммой весов его рёбер. В отличие от задачи кратчайшего пути, которая может быть решена за полиномиальное время на графах без циклов с отрицательным весом, задача нахождения самого длинного пути является NP-трудной и не может быть решена за полиномиальное время...
Циклический ранг ориентированного графа — мера связности орграфа, предложенная Эгганом и Бучи. Это понятие интуитивно отражает, насколько близок орграф к направленному ациклическому графу (НАГ, en:DAG), когда циклический ранг НАГ равен нулю, в то время как ориентированный орграф порядка n с петлями в каждой вершине имеет циклический ранг n. Циклический ранг ориентированного графа тесно связан с глубиной дерева неориентированного графа и высотой итерации регулярных языков. Циклический ранг нашёл применение...
Биполярная ориентация или st-ориентация неориентированного графа — это назначение ориентации каждому ребру (ориентации), что превращает граф в направленный ациклический граф с единственным источником s и единственном стоком t, а st-нумерация графа — это топологическая сортировка полученного ориентированного ациклического графа.
Задача о клике относится к классу NP-полных задач в области теории графов. Впервые она была сформулирована в 1972 году Ричардом Карпом.
Дерево Тремо неориентированного графа G — это остовное дерево графа G с выделенным корнем со свойством, что любые две смежные вершины в графе G связаны друг с другом отношением предок/потомок. Все деревья поиска в глубину и все гамильтоновы пути являются деревьями Тремо.
Задача о покрытии множества является классическим вопросом информатики и теории сложности. Данная задача обобщает NP-полную задачу о вершинном покрытии (и потому является NP-сложной). Несмотря на то, что задача о вершинном покрытии сходна с данной, подход, использованный в приближённом алгоритме, здесь не работает. Вместо этого мы рассмотрим жадный алгоритм. Даваемое им решение будет хуже оптимального в логарифмическое число раз. С ростом размера задачи качество решения ухудшается, но всё же довольно...
Задача о змее в коробке в теории графов и информатике имеет дело с поиском определённого вида пути вдоль рёбер гиперкуба. Этот путь начинается с одного угла и проходит вдоль рёбер столько углов, сколько он может достичь. После того как достигается новый угол, предыдущий угол и все его соседи делаются недопустимыми для использования. Путь никогда не должен проходить через угол после того, как он помечен как недопустимый.
Два-граф ы не являются графами, и их не следует путать с другими объектами, которые называются 2-графами в теории графов, в частности, с 2-регулярными графами. Для их различения используется слово «два», а не цифра «2».
В теории графов
число Хадвигера неориентированного графа G — это размер наибольшего полного графа, который может быть получен стягиванием рёбер графа G.
Рёберный граф гиперграфа — это граф, множество вершин которого является множеством гиперрёбер гиперграфа, а два гиперребра смежны, если они имеют непустое пересечение. Другими словами, рёберный граф гиперграфа — это граф пересечений семейства конечных множеств. Понятие является обобщением рёберного графа обычного графа.
В теории графов циркулянтным графом называется неориентированный граф, имеющий циклическую группу симметрий, которая включает симметрию, переводящую любую вершину в любую другую вершину.
Подробнее: Циркулянтный граф
Алгоритм для дерева сочленений — это метод, используемый в машинном обучении для извлечения маргинализации в графах общего вида. В сущности, алгоритм осуществляет распространение доверия на модифицированном графе, называемом деревом сочленений. Основная посылка алгоритма — исключить циклы путём кластеризации их в узлы.
В теории графов пороговый граф — это граф, который может быть построен из одновершинного графа последовательным выполнением следующих двух операций...
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.
Подробнее: Спектральная кластеризация
В теории графов древесная декомпозиция — это отображение графа в дерево, которое может быть использовано для определения древесной ширины графа и ускорения решения определённых вычислительных задач на графах.
Дробная раскраска — это тема молодой области теории графов, известной как теория дробных графов. Дробная раскраска является обобщением обычной раскраски. В традиционной раскраске графа каждой вершине назначается некий цвет, и смежным вершинам — тем, что связаны рёбрами, — должны быть назначены разные цвета. В дробной раскраске каждой вершине назначается набор цветов.
Вырожденность известна также под именем k-ядерное число, ширина и зацепление, и, по существу, это то же самое, что и число раскраски или число Секереша — Вилфа. k-Вырожденные графы называются также k-индуктивными графами. Вырожденность графа может быть вычислена за линейное время с помощью алгоритма, который последовательно удаляет вершины с минимальной степенью. Компонента связности, оставшаяся после удаления всех вершин со степенью , меньшей k, называется k-ядром графа, и вырожденность графа равна...
Планарное накрытие конечного графа G — это конечный накрывающий граф графа G, являющийся планарным графом. Любой граф, который может быть вложен в проективную плоскость, имеет планарное накрытие. Нерешённая гипотеза Сэйи Негами утверждает, что только эти графы и имеют планарные накрытия.
Граф C является накрывающим графом другого графа G, если имеется накрывающее отображение из множества вершин C в множество вершин G. Накрывающее отображение f является сюръекцией и локальным изоморфизмом — окрестность вершины v в C отображается биективно в окрестность f(v) в G.
Экспандер ы — это класс графов, изучение которых первыми начали московские математики М. С. Пинскер, Л. А. Бассалыго и Г. А. Маргулис в семидесятые годы XX века.
Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.
Ориентация неориентированного графа — это назначение направлений каждому ребру, что превращает исходный граф в ориентированный граф.
Гомоморфизм графов — это отображение между двумя графами, не нарушающее структуру. Более конкретно, это отображение между набором вершин двух графов, которое отображает смежные вершины в смежные.
Куб Фибоначчи можно определить в терминах кодов Фибоначчи и расстояния Хэмминга, независимых множеств вершин в путях, или через дистрибутивные решётки.
Дерево — это связный ациклический граф. Связность означает наличие путей между любой парой вершин, ацикличность — отсутствие циклов и то, что между парами вершин имеется только по одному пути.