Связанные понятия
Надстрочный знак, ве́рхний и́ндекс, суперскри́пт (англ. super script) (типографика) — знак, записанный выше основной строки. Применяется, например, при записи математических и химических формул.
Подробнее: Верхний индекс
Машинопи́сный апостро́ф (apostrophe, apostrophe-quote) — условное название знака, встречающегося на клавиатуре большинства пишущих машин с латинским шрифтом и компьютерных дисплеев. По историческим причинам лишь машинописный апостроф имеется на компьютерных клавиатурах и в 7-битовой кодировке ASCII. В качестве типографского символа он является суррогатом апострофа, кавычек, знака ударения, штриха (знака производной в математике, знака угловых минут и т. п.) и др. Часто смешивается с машинописным...
Синглетон — множество с единственным элементом. Например, множество {0} является синглетоном.
Совреме́нная ара́бская математи́ческая нота́ция (араб. الترميز الرياضي العربي) — математическая нотация, основанная на арабском письме. Эта нотация обычно используется на довузовском уровне обучения. Нотация в основном схожа с обычной нотацией, но имеет некоторые заметные черты, которые отличает её от западного аналога.
Черта́ све́рху — типографический знак горизонтальной линии, нарисованной сразу над текстом. В математической нотации черта сверху долгое время используется для vinculum, объединения определённых символов. Также знак используется с римскими цифрами, показывая умножение цифры на тысячу, а также в средневековых аббревиатурах (sigla). Обозначение одного и более слов сплошной линией над буквами называется надчёркивание.
О́белюс , обел (÷) (лат. obelus — от греч. ὀβελός, тот же корень, что и обелиск) — небуквенный символ, внешне напоминающий объединение знаков минуса и двоеточия.
Рекурсивное определение или индуктивное определение определяет сущность в терминах её самой (то есть рекурсивно), хотя и полезным способом. Для того, чтобы это было возможно, определение в любом данном случае должно быть хорошо-основанным, избегая бесконечной регрессии.
Функциональный объект (англ. function object), также функтор, функционал и функционоид — распространённая в программировании конструкция, позволяющая использовать объект как функцию. Часто используется как callback, делегат.
Неразры́вный пробе́л (англ. non-breaking space) — элемент компьютерной кодировки текстов, отображающийся внутри строки подобно обычному пробелу, но не позволяющий программам отображения и печати разорвать в этом месте строку. Используется для автоматизации вёрстки, правила которой предписывают избегать разрыва строк в известных случаях (большей частью для удобочитаемости).
Веду́щие нули ́ в записи числа при помощи позиционной системы счисления — последовательность из одного или более нулей, занимающая старшие разряды. Понятие ведущих нулей возникает при использовании представлений чисел, имеющих фиксированное количество разрядов. В остальных случаях, как правило, ведущие нули не пишутся.
Се́ма — дифференциальный семантический признак, компонент значения, который выявляется при сопоставлении значений разных слов. Является нечленимой составной частью лексического значения (семемы).
Аппликативное программирование — один из видов декларативного программирования, в котором написание программы состоит в систематическом осуществлении применения одного объекта к другому. Результатом такого применения вновь является объект, который может участвовать в применениях как в роли функции, так и в роли аргумента и так далее. Это делает запись программы математически ясной. Тот факт, что функция обозначается выражением, свидетельствует о возможности использования значений-функций — функциональных...
Дифференциа́л (от лат. differentia — разность, различие) в математике — линейная часть приращения дифференцируемой функции или отображения.
Аллограф (от греч. άλλος — другой и греч. γράφω — пишу; англ. allograph) дословно «другое письмо», различные варианты начертания.
Основная латиница или Управляющие символы C0 и основная латиница (англ. Basic Latin, C0 Controls and Basic Latin) — первый блок стандарта Юникод и единственный блок, кодируемый одним байтом в системе UTF-8. Блок содержит все буквы и управляющие коды из кодировки ASCII.
Категория абелевых групп (обозначается Ab) — категория, объекты которой — абелевы группы, а морфизмы — гомоморфизмы групп. Является прототипом абелевой категории., в действительности, любая малая абелева категория может быть вложена в Ab.
Семантическая роль имени при предикате — в языкознании: часть семантики предиката, отражающая общие свойства аргумента предиката — участника называемой предикатом ситуации. Описание в терминах семантических ролей отражает сходства моделей управления различных предикатных слов.
Сегмента́ция в лингвистике — линейное членение речевого потока на составляющие отрезки, называемые сегментами. Сегменты противопоставляются накладывающимся на них нелинейным суперсегментным (сверхсегментным) единицам языка...
Φ, φ (название: фи, греч. φι) — 21-я буква греческого алфавита. В системе греческой алфавитной записи чисел имеет числовое значение 500. От буквы «фи» произошла кириллическая буква Ф.
Печатные символы — элементы набора символов, имеющие графическое представление, например в виде значка на бумаге или определённого рисунка на экране. Примерами печатных символов являются буквы, цифры, знаки препинания и псевдографические символы.
В информатике
объединение (англ. union) представляет собой значение или структуру данных, которое может иметь несколько различных представлений.
Заменяющий символ — символ, который используется, когда значение символа неизвестно или не может быть выражено в Юникоде.
В теории категорий, представимый функтор — функтор специального типа из произвольной категории в категорию множеств. В некотором смысле, такие функторы задают представление категории в терминах множеств и функций.
Календарная дата — порядковый номер календарного дня, порядковый номер или наименование календарного месяца и порядковый номер календарного года (Федеральный закон Российской Федерации от 3 июня 2011 г. № 107-ФЗ «Об исчислении времени»).
Нумерация Гёделя — это функция g, сопоставляющая каждому объекту некоторого формального языка её номер. С её помощью можно явно пронумеровать следующие объекты языка: переменные, предметные константы, функциональные символы, предикатные символы и формулы, построенные из них. Построение нумерации Гёделя для объектов теории называется арифметизацией теории — оно позволяет переводить высказывания, аксиомы, теоремы, теории в объекты арифметики. При этом требуется, чтобы нумерация g была эффективно вычислимой...
Перенос и заём в арифметике — приёмы, применяемые в арифметических алгоритмах позиционных систем счисления при выполнении операций сложения и вычитания соответственно, а также (в составе тех же сложения и вычитания) и иных арифметичких операций. Перенос можно понимать как выделение умножения на основание системы счисления в отдельное слагаемое, с последующей перегруппировкой слагаемых.
Граф зависи́мостей — ориентированный граф, отображающий соотношение множества элементов некоторой совокупности в соответствии с выбранным транзитивным отношением над ней.
В теории категорий, понятие элемента (или точки) обобщает обычное понятие элемента множества на объект произвольной категории. Иногда оно позволяет переформулировать свойства морфизмов (например, свойство мономорфизма), которые обычно описываются при помощи универсальных свойств в более привычных терминах действия отображения на элементах. Этот подход к теории категорий (и особенно его использование в лемме Йонеды) был предложен Гротендиком.
Подробнее: Элемент (теория категорий)
Мемоизация (запоминание, от англ. memoization (англ.) в программировании) — сохранение результатов выполнения функций для предотвращения повторных вычислений. Это один из способов оптимизации, применяемый для увеличения скорости выполнения компьютерных программ. Перед вызовом функции проверяется, вызывалась ли функция ранее...
Грамматика сложения деревьев (англ. tree-adjoining grammar, TAG) — это формальная грамматика, придуманная Аравиндом Джоши. Эта грамматика обобщает контекстно-свободную грамматику тем, что элементарной единицей в правилах вывода являются деревья, а не отдельные символы. Таким образом грамматика определяет правила замены узлов дерева на поддеревья (см. дерево в теории графов и дерево в информатике).
Полурешётка (англ. semilattice, до 1960-х годов также использовался термин полуструктура) в общей алгебре — полугруппа, бинарная операция в которой коммутативна и идемпотентна.
В теории представлений групп Ли и алгебр Ли, фундаментальное представление — это неприводимое конечномерное представление полупростой группы Ли или алгебры Ли, старший вес которого является фундаментальным весом. Например, определяющий модуль классической группы Ли является фундаментальным представлением. Любое конечномерное неприводимое представление полупростой группы Ли или алгебры Ли полностью определяется своим старшим весом (теорема Картана) и может быть построено из фундаментальных представлений...
Подробнее: Фундаментальное представление
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
Максимальным идеалом коммутативного кольца называется всякий собственный идеал кольца, не содержащийся ни в каком другом собственном идеале.
Подробнее: Максимальный идеал
Метка (англ. label) — символьное имя, идентификатор для более удобного указания данных и кода в языках программирования. Позволяет программисту обходиться без вычисления и пересчёта адресов и смещений внутри программы (эти действия за него выполняет компилятор). Несмотря на то, что большинство языков программирования высокого уровня поддерживают операции с метками, их использование крайне нежелательно, так как программный код становится плохочитаемым, и отладка такой программы занимает большее время...
В информатике
таблица символов (от англ. symbol table «таблица идентификаторов») — это структура данных, используемая транслятором (компилятором или интерпретатором), в которой каждый идентификатор переменной или функции из исходного кода ассоциируется с информацией, связанной с его объявлением или появлением в коде: типом данных, областью видимости и в некоторых случаях местом в памяти (смещением).
В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным.
Подробнее: Квадратное треугольное число
Тео́рия поле́й — раздел математики, занимающийся изучением свойств полей, то есть структур, обобщающих свойства сложения, вычитания, умножения и деления чисел.
Группа Григорчука — первый пример конечнопорождённой группы промежуточного роста (то есть её рост быстрее полиномиального, но медленнее экспоненциального).
Преобразование в математике — отображение (функция) множества в себя. Иногда (в особенности в математическом анализе и геометрии) преобразованиями называют отображения, переводящие некоторое множество в другое множество.
Языком
Дика (англ. Dyck language) над 2n буквами называется контекстно-свободный язык над алфавитом...
Неассоциативное кольцо (не обязательно ассоциативное кольцо) — общеалгебраическая структура, обобщение понятия кольца, определяется сходным с кольцом образом, но при этом не требуется ассоциативность умножения. Иногда под «кольцом» понимается это его обобщение, но большинство источников по алгебре включают в определение термина «кольцо» условие ассоциативности умножения.
Нат — одна из единиц измерения информации. Определяется через натуральный логарифм, в отличие от других единиц, где основание логарифма является целым числом. Нат равен log2e ≈ 1,443 бит.
Конгруэнция — отношение эквивалентности на алгебраической системе, сохраняющееся при основных операциях. Понятие играет важную роль в универсальной алгебре: всякая конгруэнция порождает соответствующую факторсистему — разбиение исходной алгебраической системы на классы эквивалентности по отношению к конгруэнции.
Дискре́тное простра́нство в общей топологии и смежных областях математики — это пространство, все точки которого изолированы друг от друга в некотором смысле.