Связанные понятия
Маши́на (лат. machina — «устройство, конструкция», от др.-греч. μηχανή — «приспособление, способ») — техническое устройство, выполняющее механические движения для преобразования энергии, материалов и информации. В более расширенном современном определении, появившемся с развитием электроники, машиной является технический объект, состоящий из взаимосвязанных функциональных частей (деталей, узлов, устройств, механизмов и др.), использующий энергию для выполнения возложенных на него функций. В этом...
Дета́ль — изготовленное, изготавливаемое, или же подлежащее изготовлению изделие, являющееся частью машины, или же какой-либо технической конструкции, изготавливаемое из однородного по структуре и свойствам материала без применения при этом каких-либо сборочных операций.
Пневма́тика (от греч. πνεῦμα — дыхание, дуновение, дух) — раздел физики, изучающий равновесие и движение газов, а также посвящённый механизмам и устройствам использующим разность давления газа для своей работы. Технически пневматика близка к гидравлике.
Винт (шнек) — простейший механизм. Резьба винта, в сущности, представляет собой другой простейший механизм — наклонную плоскость, многократно обёрнутую вокруг цилиндра.
Храпово́й механи́зм (храпови́к) — зубчатый механизм прерывистого движения, предназначенный для преобразования возвратно-вращательного движения в прерывистое вращательное движение в одном направлении. Проще говоря, храповик позволяет оси вращаться в одном направлении и не позволяет вращаться в другом. Храповые механизмы используются достаточно широко — например, в турникетах, гаечных ключах, заводных механизмах, домкратах, лебёдках, замках наручников и т. д.
Упоминания в литературе
Червячная передача представляет собой
механизм , предназначенный для передачи вращения между валами со скрещивающимися осями посредством винта, выполненного в виде червяка и сопряженного с ним червячного колеса. Червячная передача, как и зубчатая, имеет начальные и делительные поверхности, представляющие собой поверхности цилиндров (в большинстве случаев). Особой разновидностью червячной передачи является глобоидная передача, у которой делительная поверхность червяка выполнена в виде вогнутой поверхности тора. (Примечание: тор – от лат. torus – «вздутие», «выпуклость», «узел» – геометрическое тело, образуемое вращением круга вокруг прямой, лежащей в плоскости этого круга, но не пересекающей его.) Червячная передача представляет собой разновидность винтовой зубчатой передачи и характеризуется тем, что поверхности зубьев колеса огибают на определенном угле поверхности витков червяка и контактируют с витками червяка по линии, благодаря чему повышается несущая способность передачи. Червячная передача характеризуется передаточным числом u = z2 / z1 где z2 – число зубьев колеса (обычно z2 = 18 / 300); z1 – число заходов винта на червяке (в большинстве случаев z1 = 1 / 4), а также передаточным отношением i = ω1 / ω2 = u, где ω1 и ω2 – угловые скорости соответственно червяка и колеса. Червячная передача позволяет получать большие передаточные отношения (до 300), но имеет сравнительно низкий коэффициент полезного действия (КПД от 0,50 до 0,85). Как показали специальные исследования, КПД тем выше, чем больше угол винтовой линии червяка, вычисляемый следующим образом по формуле: γ = arctg (pz1 / πd1 = (mz1) / d1, где p – осевой шаг; d1 – делительный диаметр червяка, m – модуль. Чем меньше угол, тем более вероятно явление самоторможения при ведущем червячном колесе. Червячные передачи используются в механизмах в тех случаях, когда требуется значительное понижение угловой скорости; повышающие червячные передачи встречаются очень редко. Цилиндрический червяк, применяемый во многих червячных передачах, может быть:
Дорогие модели оснащаются электроникой, которая поддерживает выбранное число ходов вне зависимости от нагрузки на полотно. Иногда этот параметр называют константной регулировкой. Неотъемлемой частью электролобзика является опорная плита, благодаря которой он перемещается по поверхности обрабатываемого материала. Для пропилов под углом предусмотрен поворотный
механизм плиты. С его помощью плита фиксируется под произвольным углом (до 45°) в одну или другую сторону. Есть модели со ступенчатой установкой угла наклона (0-15-30-45°). Предполагается возможность закрепления на плите направляющей (для идеально ровного пропила) или реже циркульной штанги (для выпиливания больших круглых отверстий). Кроме того, в некоторых моделях позволяется закреплять опорную плиту для использования лобзика в качестве стационарной пилы («вверх ногами»). Бытовые лобзики исключают такую возможность, поскольку в них не предусмотрены соответствующие предохранительные механизмы.
При движении по неровной дороге и при поворотах правые и левые колеса автомобиля проходят неодинаковый путь. Если бы колеса вращались с одинаковой скоростью, то одно из колес проходило бы меньший путь и проскальзывало относительно дороги. Для того, чтобы не происходило проскальзывание и колеса вращались с различной скоростью (частотой вращения) применяют специальный
механизм (дифференциал).
Теперь легко будет понять устройство заколдованной сферы. Дно ее (см. рис. 36) составляет большая вращающаяся платформа, которой придана кривизна параболоида. Хотя вращение, благодаря скрытому под платформой
механизму , совершается чрезвычайно плавно, но все же люди на платформе испытывали бы головокружение, если бы все окружающие предметы не перемещались вместе с ними. Чтобы избежать этого и не дать возможности наблюдателю догадаться, что он движется, вращающуюся платформу помещают внутри большого шара, непрозрачные стенки которого движутся с такою же скоростью, как и сама платформа.
Если элементом соприкосновения звеньев является линия или точка, то такая пара называется высшей. Примером высшей кинематической пары может служить кулачковый
механизм (рис. 9а) и зубчатая передача (9б). Удельное давление в таких механизмах очень велико, что вызывает повышенный износ их элементов и является большим недостатком. Однако ценным достоинством высших кинематических пар является их разнообразие. С их помощью значительно упрощается создание механизмов, обеспечивающих заданные сложные законы движения. Различают плоские и пространственные кинематические пары.
Связанные понятия (продолжение)
Шкив (нидерл. schijf, англ. sheave) — фрикционное колесо с ободом или канавкой по окружности, которое передаёт движение приводному ремню или канату.
Простейшие механизмы — устройства, служащие для преобразования направления и величины (модуля) силы. Представляют собой элементы более сложных механизмов. Некоторые из простейших механизмов появились в глубокой древности.
Подробнее: Простейший механизм
Кулачко́вый механи́зм — механизм, образующий высшую кинематическую пару, имеющий подвижное звено, совершающее вращательное движение, — кулак (кулачок), с поверхностью переменной кривизны или имеющей форму эксцентрика, взаимодействующей с другим подвижным звеном — толкателем, если подвижное звено совершает прямолинейное движение, или коромыслом, если подвижное звено совершает качание. Кулак, совершающий прямолинейное движение, называется копиром.
Регулирующая арматура — это вид трубопроводной арматуры, предназначенный для регулирования параметров рабочей среды. В понятие регулирования параметров входит регулирование расхода среды, поддержания давления среды в заданных пределах, смешивание различных сред в необходимых пропорциях, поддержание заданного уровня жидкости в сосудах и некоторые другие. Выполнение всех своих функций регулирующая арматура осуществляет за счёт изменения расхода среды через своё проходное сечение.
Кинематическая пара (от англ. kinematic pair) — это соединение двух звеньев, обеспечивающее определённое относительное движение. Для всех кинематических пар необходим постоянный контакт между их элементами, это достигается либо с помощью определённых усилий, либо приданием элементам определённой геометрической формы. К кинематическим парам относятся: Карданная передача, Шарнир.
Привод : В механике При́вод (он же силовой привод) — совокупность устройств, предназначенных для приведения в действие машин и механизмов. Является тем, что выполняет работу по превращению одного типа энергии в другой и передаёт эту энергию исполнительному механизму. То, что приводит исполнительный механизм в движение, представляет собой своего рода «вставку» между приводным двигателем и нагрузкой (машиной или механизмом, движителем) и выполняет те же функции, что и механическая передача. Подсистемы...
Кинематическая цепь (англ. kinematic chain) — это связанная система объектов, образующих между собой кинематические пары.
Вал — деталь машины, предназначенная для передачи крутящего момента и восприятия действующих сил со стороны расположенных на нём деталей и опор.
Подши́пник (от «под шип») — сборочный узел, являющийся частью опоры или упора и поддерживающий вал, ось или иную подвижную конструкцию с заданной жёсткостью. Фиксирует положение в пространстве, обеспечивает вращение, качение с наименьшим сопротивлением, воспринимает и передаёт нагрузку от подвижного узла на другие части конструкции.
Пневматический привод арматуры — это устройство, являющееся видом пневматических приводов, служащее для механизации и автоматизации трубопроводной арматуры, применяющееся во многих отраслях промышленности, играя важную роль в технологических системах многих производств. Чаще всего пневмоприводы используются для дистанционного управления арматурой, её открытия и закрытия, а также для определения положения арматуры. Кроме пневматических приводов, существуют гидравлические электрические и электромагнитные...
Пружина — упругий элемент, предназначенный для накапливания или поглощения механической энергии. Пружина может быть изготовлена из любого материала, имеющего достаточно высокие прочностные и упругие свойства (сталь, пластмасса, дерево, фанера, даже картон).
Металлоре́жущий стано́к — агрегатный механизм (станок), предназначен для обработки металлических и неметаллических заготовок. Обычно имеет шпиндель либо планшайбу. Работы на данном оборудовании осуществляются механическим способом с применением резцов, свёрл и пр. режущего инструмента.
Пневматический привод (пневмопривод) — совокупность устройств, предназначенных для приведения в движение частей машин и механизмов посредством энергии сжатого воздуха.
Поступа́тельное движе́ние — механическое движение системы точек (абсолютно твёрдого тела), при котором отрезок прямой, связывающий две любые точки этого тела, форма и размеры которого во время движения не меняются, остаётся параллельным своему положению в любой предыдущий момент времени. При поступательном движении все точки тела описывают одну и ту же траекторию (с точностью до постоянного смещения в пространстве) и в любой данный момент времени имеют одинаковые по направлению и абсолютной величине...
Обрабо́тка ре́занием — обработка, заключающаяся в образовании новых поверхностей отделением поверхностных слоёв материала с образованием стружки. Осуществляется путём снятия стружки режущим инструментом (резцом, фрезой и пр.).
Гидравлический двигатель (гидродвигатель) — гидравлическая машина, предназначенная для преобразования гидравлической энергии в механическую. К гидродвигателям относят гидромоторы, гидроцилиндры, гидротурбины и поворотные гидродвигатели.
Инструме́нт (лат. instrumentum — орудие) — предмет, устройство, механизм, машина или алгоритм, используемые для целевого воздействия на объект: его изменения или измерения в целях достижения полезного эффекта. В основе конструкции и правил использования инструмента лежит знание законов материального мира, приложенных к технологии производства. Сложный инструмент заключает в себе идею нескольких элементарных.
Электрический привод (сокращённо — электропривод, ЭП) — управляемая электромеханическая система, предназначенная для преобразования электрической энергии в механическую и обратно и управления этим процессом.
Механическая передача — механизм, служащий для передачи и преобразования механической энергии от энергетической машины до исполнительного механизма (органа) одного или более, как правило, с изменением характера движения (изменения направления, сил, моментов и скоростей). Как правило, используется передача вращательного движения.
Сосуд под давлением — закрытая ёмкость (стационарно установленная или передвижная), предназначенная для ведения химических, тепловых и других технологических процессов, а также для хранения и транспортировки газообразных, жидких и других веществ. Границей сосуда являются входные и выходные штуцеры.
Ось (от праславян. ость) — серединная линия. В ботанике устаревшая форма — ость — продолжает использоваться.
Насо́с — гидравлическая машина, преобразующая механическую энергию приводного двигателя или мускульную энергию (в ручных насосах) в энергию потока жидкости, служащую для перемещения и создания напора жидкостей всех видов, механической смеси жидкости с твёрдыми и коллоидными веществами или сжиженных газов. Разность давлений жидкости на выходе из насоса и присоединённом трубопроводе обусловливает её перемещение.
В физике механи́ческая эне́ргия описывает сумму потенциальной и кинетической энергий, имеющихся в компонентах механической системы. Механическая энергия — это энергия, связанная с движением объекта или его положением, способность совершать механическую работу; это энергия движения и сопровождающего его взаимодействия.
Подробнее: Механическая энергия
Защитная арматура — вид трубопроводной арматуры, предназначенный для защиты технологических систем, оборудования, трубопроводов, насосов и сосудов под давлением от возникновения или последствий аварийных ситуаций. В результате эксплуатации могут возникать различные проблемы, обусловленные неисправностями оборудования, неправильным ведением технологического процесса, другими сторонними факторами (применительно к рисунку справа это может быть, к примеру, разрушение части топливной системы очередью...
Изде́лие — предмет или набор предметов производства, подлежащих изготовлению в организации (на предприятии) по конструкторской документации.
Станок — машина (агрегатный механизм), используемая (как правило, в промышленности) для обработки различных материалов, либо приспособление для выполнения чего-либо.
Электрический привод арматуры — это устройство, являющееся видом электрических приводов, служащее для механизации и автоматизации трубопроводной арматуры, и широко применяющееся во всех отраслях промышленности, играя важнейшую роль практически во всех технологических процессах. Чаще всего электропривода используются для дистанционного управления арматурой, её открытия и закрытия, постоянного регулирования, а также для диагностики и определения положения арматуры. Кроме электрических приводов, существуют...
Уплотнительное устройство — устройство или способ предотвращения или уменьшения утечки жидкости, газа путём создания преграды в местах соединения между деталями машин (механизма) состоящее из одной детали и более. Существуют две большие группы: неподвижные уплотнительные устройства (торцевые, радиальные, конусные) и подвижные уплотнительные устройства (торцевые, радиальные, конусные, комбинированные).
Винт (от нем. Gewinde — нарезка, резьба, через польск. gwint) — крепёжное изделие для соединения деталей, одна из которых может быть с внутренней резьбой. Винт имеет вид стержня с наружной резьбой на одном конце и конструктивным элементом для передачи крутящего момента на другом. Передающим усилие элементом могут являться различного рода головки, шлицы в торце стержня и тому подобное. Шуруп — это разновидность винта, отличается тем, что имеет коническое сужение на конце и более редкую резьбу. Шуруп...
Фрикционная передача (лат. frictio, родительный падеж frictionis — трение) — кинематическая пара, использующая силу трения между собой для передачи механической энергии.
Динамо́ме́тр (от др.-греч. δύναμις — «сила» и μέτρεω — «измеряю») — прибор для измерения силы или момента силы, состоит из силового звена (упругого элемента) и отсчётного устройства. В силовом звене измеряемое усилие вызывает деформацию, которая непосредственно или через передачу сообщается отсчётному устройству. Существующими динамометрами можно измерять усилия от долей ньютонов (н, долей кгс) до 20 Мн (2000 тс). По принципу действия различают динамометры механические (пружинные или рычажные), гидравлические...
Элемент (лат. elementum — первичная материя, стихия) — составляющая часть чего-либо (особенно — простая, не состоящая, в свою очередь, из других частей).
Плунжер (от англ. plunge — нырять, погружаться) — вытеснитель или поршень цилиндрической формы, длина которого намного больше диаметра.
Ремённая передача — это передача механической энергии при помощи гибкого элемента — приводного ремня, за счёт сил трения или сил зацепления (зубчатые ремни). Может иметь как постоянное, так и переменное передаточное число (вариатор), валы которого могут быть с параллельными, пересекающимися и со скрещивающимися осями.
Эксцентрик — (лат. ex centro — рус. из центра) диск (цилиндрическая поверхность) или сектор диска, насаженный на вращающийся вал так, что ось вращения диска параллельна, но не совпадает с осью вращения вала, для преобразования вращательного движения в поступательное. Расстояние между осями называется эксцентриситетом.
Наклонная плоскость — это плоская поверхность, установленная под углом к горизонтали. Наклонная плоскость является одним из простых механизмов. Она позволяет поднимать груз вверх, прикладывая к нему усилие, заметно меньшее, чем сила тяжести, действующая на этот груз.
Клапан (также вентиль) — запорная и регулирующая арматура, конструктивно выполненная в виде клапана, то есть её запирающий элемент перемещается параллельно оси потока рабочей среды . Как и другие виды запорной арматуры, запорные клапаны применяются для полного перекрытия своего проходного сечения, а, следовательно, потока рабочей среды; то есть запирающий элемент, которым в запорном клапане чаще всего является золотник, в процессе эксплуатации находится в крайних положениях «открыто» или «закрыто...
Манипуля́тор — механизм для управления пространственным положением орудий, объектов труда и конструкционных узлов и элементов. Это значение закрепилось за словом с середины XX века, благодаря применению сложных механизмов для манипулирования опасными объектами в атомной промышленности. Используется для перемещения различных грузов, получил широкое развитие в современном обществе.
Автоматизация — одно из направлений научно-технического прогресса, использующее саморегулирующие технические средства и математические методы с целью освобождения человека от участия в процессах получения, преобразования, передачи и использования энергии, материалов, изделий или информации, либо существенного уменьшения степени этого участия или трудоёмкости выполняемых операций. Термин «автоматизация», основанный на более раннем слове «автоматический» (поступающий с автомата), не был широко использован...
Гидравлический привод (гидропривод) — совокупность устройств, предназначенных для приведения в движение машин и механизмов посредством гидравлической энергии.
Регулирующий клапан — один из конструктивных видов регулирующей трубопроводной арматуры. Это наиболее часто применяющийся тип регулирующей арматуры как для непрерывного (аналогового), так и для дискретного регулирования расхода и давления. Выполнение этой задачи регулирующие клапаны осуществляют за счёт изменения расхода среды через своё проходное сечение. Материал изготовления регулирующих клапанов зависит напрямую от типа рабочей среды, с которой клапан будет иметь контакт.
Тре́ние — процесс механического взаимодействия соприкасающихся тел при их относительном смещении в плоскости касания (внешнее трение) либо при относительном смещении параллельных слоёв жидкости, газа или деформируемого твёрдого тела (внутреннее трение, или вязкость). Далее в этой статье под трением понимается лишь внешнее трение. Изучением процессов трения занимается раздел физики, который называется механикой фрикционного взаимодействия, или трибологией.
Центробежный регулятор — механизм, реализующий отрицательную обратную связь для регулировки скорости вращения в машинах разнообразных принципов действия и назначения.
Домкра́т (от нидерл. dommekracht) - стационарный, переносный или передвижной механизм для подъёма опирающегося на него груза. Домкраты бывают реечные, винтовые, гидравлические, клиновые и пневматические.
Исполни́тельное устро́йство (исполнительный элемент, актуа́тор, актюа́тор) — функциональный элемент системы автоматического управления, который воздействует на объект изменяя поток энергии или материалов, которые поступают на объект. Большинство исполнительных устройств имеют механический или электрический выход.Состоит из двух функциональных блоков: исполнительного устройства (если исполнительное устройство механическое, то его часто называют исполнительный механизм) и регулирующего органа, например...
Упоминания в литературе (продолжение)
Ведущий мост состоит из
механизмов , с помощью которых происходит увеличение вращающего момента и вращение валов передается к ведущим колесам под прямым углом.
Наружный поворот головки и внутренний поворот туловища. Родившаяся головка возвращается в исходное положение. Затылок снова занимает сначала косое положение, переходя затем в поперечную позицию (левую или правую). При этом движении поворачивается туловище плода, и происходит установка плечиков в переднезаднем размере выхода таза, что составляет четвертый этап
механизма родов.
В тормозном
механизме барабан 1 жестко соединен с колесом. На неподвижном опорном диске 2 укреплены пальцы 4, на которые шарнирно устанавливают тормозные колодки 3. При нажатии педели (рис б) разжимное устройство 5 раздвигает колодки и прижимает их к тормозному барабану с силой прижима, в результате чего между барабаном и колодками возникают силы трения, которые образуют пару сил на плече, равном диаметру тормозного барабана. Эта пара и создает момент трения, направленный в сторону, противоположную вращению колеса. Следовательно, момент трения противодействует движению колеса, а между колесом и дорогой возникает тормозная сила.
Механизм поворота кошки теперь понятен. У кошки есть два средства повернуть свое тело при падении. Первое средство, это – перемещение хвоста: когда кошка, держа хвост под углом к своему телу, производит им вращательное движение, то все тело немного поворачивается в обратном направлении. Почему? Потому что мускулы, вращающие хвост в одну сторону, в то же время отталкиваются от тела и тем заставляют его поворачиваться в обратном направлении. Рядом последовательных оборотов хвоста кошка может повернуть свое тело на желаемый угол; в этом нет никакого нарушения законов механики.
Универсальный вороток предназначен для закрепления плашек с наружным диаметром 20 мм всех видов метчиков и разверток, имеющих хвостовики квадратного сечения с длиной стороны до 8 мм. В корпусе, закрытом крышкой, помещен
механизм , позволяющий изменять величину квадратного отверстия. Механизм приводится в движение винтом с рифленой головкой. Резьбовая часть винта связана с одним из четырех кулачков, размещенных внутри корпуса. При вращении винта смещается кулачок, образующий одну из сторон квадрата. Снижаясь, кулачок оказывает давление на скошенный угол второго кулачка, сдвигая его вправо. Прижимаемый таким образом второй кулачок в свою очередь поднимает третий кулачок, а тот смещает влево четвертый. В результате этого, все четыре стороны квадратного отверстия уменьшаются в равной степени. Такая регулировка квадратного отверстия позволяет закреплять различные виды метчиков и разверток. Для закрепления плашек в корпусе универсального воротка имеется гнездо. Плашки закрепляются винтами. Применение универсального воротка исключает возможность появления брака при нарезании резьбы плашками. Конструкция такого приспособления позволяет исключить из технологического процесса нарезания резьбы набор воротков, плашкодержатель и специальные направляющие приспособления к нему.
Управляя автомобилем, руль следует держать легко, а не судорожно вцепившись в него, что быстро приводит к утомлению мышц. Однако в любой момент нужно быть готовой сжать руль, если этого требуют обстоятельства. Через некоторое время вы сумеете убедиться, что автомобиль с исправным управлением сам стремится сохранять движение по прямой. Это легко проверить, если, сделав крутой поворот, дать рулю возможность легко скользнуть в руках – колеса сами возвратятся в первоначальное положение. Так же происходит и при движении по прямой, поэтому не нужно постоянно теребить руль, это не только излишне, но и вредит плавности движения машины. Чуть заметное выравнивание необходимо лишь изредка. Опытные автолюбительницы делают его автоматически, когда это действительно нужно. Те, кто слишком часто выравнивают машину, в конце концов едут по кривой, так как выравнивающие движения следуют одно за другим – в противоположном направлении. Опытная женщина за рулем словно помогает машине свернуть с прямого пути на повороте, а не поворачивает ее насильно. При управлении машиной некоторые после поворота часто опускают рулевое колесо и ждут, пока оно возвратится в нейтральное положение. Однако по соображениям безопасности этого делать нельзя. Известно немало случаев, когда при неправильной регулировке узлов установки колес или чрезмерной затяжке рулевого
механизма обод руля останавливался на месте после снятия с него рук, что приводило к тяжелым последствиям.
Прежде чем начать разметку заготовки, необходимо определить ее базу, то есть поверхность, от которой будут отсчитываться все необходимые размеры. Базовой считается та поверхность, которая определяет положение детали относительно других частей
механизма .
Однако в реальных эксплуатационных условиях реализовать такие постоянно регулируемые впускные системы для автомобильных двигателей достаточно трудно не только с точки зрения затрат, но и сложности исполнительного
механизма , а также его срока службы. Поэтому на практике реализуются более простые системы с перепуском части наддувочного воздуха на вход турбины, а также двухступенчатые впускные трубопроводы с различной длиной или, соответственно, с неодинаковыми поперечными сечениями. Какую из этих форм впускного трубопровода выбрать – зависит не только от конструкции соответствующего двигателя, но и от количества его цилиндров. Количество цилиндров играет здесь важную роль, так как оно определяет форму волны и силу пульсаций во впускной системе.
Стекла с вертикальным перемещением. Стекло может перемещаться в направляющих и устанавливаться неподвижно между двумя конечными положениями. В верхнем положении стекло полностью закрывает проем. В нижнем положении стекло полностью убирается и размещается во внутренней полости двери. Направление стекла при его перемещении осуществляется с помощью направляющих, в которых скользят боковые кромки стекла. Направляющие выполняют из материала, имеющего низкий коэффициент трения или мягкий контакт со стеклом. Направляющие вставляются в стойки для стекол. Сами стойки устанавливаются в верхней части двери, если она образует рамку, и продолжаются во внутренней полости, где их крепят винтами. Нижняя кромка стекла вставляется в металлическую оправу. Между стеклом и пазом оправы вставлена резиновая прокладка, предотвращающая контакт стекла с металлом. Оправа стекла имеет удлиненные части, к которым подсоединяется стеклоподъемный
механизм .
Собственно зрительная система, как известно, является многоканальной, а сетчатка может быть представлена в виде системы входов, упорядоченных в пространстве. В условиях свободного рассматривания при появлении стимула на периферии возбуждается один из входов (или группа близко расположенных входов), возникают рассогласование (Х) и соответствующий его величине управляющий сигнал (Y), что вызывает отрабатывание глазодвигательной системы. При этом чем дальше находится возбуждаемый канал от fovea, тем больше величина управляющего сигнала, а следовательно, и тем большая скорость задается исполнительным
механизмам . В свою очередь перемещение глаза влечет за собой изменение положения стимула относительно сетчатки и подключает новые входные каналы. Возбуждение каждого очередного входа дает новый сигнал, и, хотя его величина меньше величины начального сигнала, поскольку при движении глаза рассогласование DХ уменьшается, этот новый сигнал подключается в тот момент, когда исполнительный орган уже находится в движении с некоторой скоростью. В результате скорость движения увеличивается. Плавное нарастание скорости в первой фазе скачка обусловлено, на наш взгляд, тем, что управляющие сигналы последовательно «накладываются» на изменяющуюся в результате воздействия предшествующих управляющих сигналов регулируемую величину.
Механизм выпуска отработанных газов работает довольно просто. Из цилиндров двигателя они поступают в приемную трубу глушителя, которая соединена с дополнительным глушителем, а тот, в свою очередь – с основным глушителем (концом которого является выхлопная труба, торчащая сзади автомобиля). Резонатор и основной глушитель внутри имеют довольно сложную структуру: так находятся многочисленные отверстия, а также небольшие камеры, которые расположены в шахматном порядке, в результате чего образуется сложный запутанный лабиринт. Когда выхлопные газы проходят по этому лабиринту, они намного снижают свою скорость и выходят из выхлопной трубы практически бесшумно.
Третья система гидравлики аварийная, она дает возможность осуществить сброс некоторых частей аппарата в случае возникновения аварийной ситуации. Приводом гидравлической помпы в этой системе служит электродвигатель постоянного тока, который питается напрямую от основных аккумуляторов аппарата или от аварийной батареи. Необходимо отметить, что сброс отдельных элементов аппарата в случае аварийной ситуации может производиться и от второй системы гидравлики. На приведенной схеме ГОА «Мир» выделены те части аппарата, которые могут быть сброшены. Прежде всего, это выступающие части конструкции (которыми аппарат может зацепиться на дне за тросы, кабели и т. д.): главный и боковые двигатели; крыло; кисти манипуляторов (в случае, если что-то взято в кисть, а
механизм ее разжимания не работает); аварийный буй, выходящий после отдачи от аппарата на поверхность на тонком нейлоновом тросике длиной 8000 метров; кроме того, может быть сброшен нижний аккумуляторный бокс основной батареи весом около 1000 килограммов.
Часто встречается такое явление: водитель после выполнения маневра (разворота, прохождения поворота и т. п.) отпускает руль в «свободное плавание» и ждет, когда он самостоятельно вернется в исходное положение. С точки зрения безопасности дорожного движения так поступать нельзя. При разбалансированном стабилизирующем моменте (причиной этого могут быть неотрегулированные развал и схождение колес, незначительные неполадки в рулевом
механизме и др.) руль может не вернуться в начальное положение, а остановиться раньше времени, и тогда избежать неприятностей будет очень трудно.
Неспецифические повреждения в большинстве случаев соответствуют сходным видам автомобильной и мотоциклетной травм. Основным
механизмом их образования является удар частями движущегося транспорта. Последствия такого воздействия более значительны, так как большое значение имеет масса рельсового транспорта. Часто удар сопровождается волочением пострадавшего человека. Иногда волочение трупа или его частей происходит на большое расстояние, до сотен метров при железнодорожном происшествии.
Очень часто встречается такое явление: после выполнения маневра (разворота, прохождения поворота и т. п.) водитель отпускает руль в «свободное плавание» и ждет, когда он самостоятельно вернется в исходное положение. Учтите, что с точки зрения безопасности дорожного движения так поступать нельзя. Дело в том, что при разбалансированном стабилизирующем моменте (причиной этого могут быть неотрегулированные развал и схождение колес, незначительные неполадки в рулевом
механизме и др.) руль может не вернуться в начальное положение, а остановиться раньше времени, и тогда избежать неприятностей будет очень трудно. Если же вы не можете обойтись без такого приема, хотя бы придерживайте рулевое колесо скользящим хватом, чтобы в любой момент у вас была возможность своевременно отреагировать соответствующим образом на его нештатное поведение.
Не опасно для ракетного звездолета и сопротивление воздуха: аппарат прорезает атмосферу не с космической скоростью, а с гораздо меньшею, например со скоростью современной пули; полную же межпланетную скорость он развивает, лишь очутившись за пределами воздушной оболочки. Там, в мировом пространстве, взрывание может быть совершенно прекращено: звездолет умчится по инерции со скоростью, которая будет убывать лишь под действием земного притяжения. Он может мчаться так, без затраты горючего вещества, миллионы километров, и лишь для перемены направления полета, для изменения скорости или для ослабления удара при высадке на планету понадобится снова пустить в действие взрывной
механизм .
5) в зависимости от
механизма образования, силы воздействия и твердости объектов выделяют следы объемные и поверхностные. При образовании объемного следа следообразующая поверхность должна быть твердой, а следовоспринимающая поверхность, соответственно, мягкой. В объемном следе объект отображается в трех измерениях и дает представление о форме, размере, частных признаках объекта. Поверхностные следы возникают в случае, если твердость объектов примерно одинакова. Поверхностные следы могут быть образованы по двум причинам: в результате отделения части вещества от следообразующего объекта либо в результате отделения части следовоспринимающего объекта;
Глаз человека имеет не совсем правильную шаровидную форму (рис. 3.1). Если не вдаваться в детали, строение глаза кажется простым: две покровные ткани, три основные оболочки, а также содержимое его полости. Однако при ближайшем рассмотрении все усложняется
механизмами взаимодействия отдельных структур и их строением на микроуровне.
Чаще всего встречаются щелевидные переломы костей, отличительной особенностью которых является дефект костной ткани. Это истинный дефект, так как его невозможно заполнить костными отломками, выпавшими из него, в отличие от дырчатых переломов, возникающих от действия тупых предметов с ограниченной поверхностью, где удается заполнить дефект отломками. Это отличие объясняется тем, что при образовании щелевидного перелома края его не обламываются, а стираются щеками топора. При этом от действия мелких и более крупных неровностей лезвия и частично щек топора на краях переломов (шлифах) образуются валики и бороздки, во многих случаях хорошо различимые даже простым глазом. Концы щелевидных переломов могут быть такими же по форме, как и у ран на коже, а
механизм их образования одинаков: если носок или пятка остались за пределами разруба, образуется острый конец, если носок или пятка погрузились в рану, образуется тупой конец.
Такие ворота обычно оборудованы
механизмом фиксирования створок в закрытом и открытом положении. Работает он таким образом, что створки, пройдя нейтральное положение (примерно 45°), удерживаются пружиной в закрытом или открытом положении. Кроме того, такая система обеспечивает необходимую безопасность, исключая самопроизвольное закрытие створок при порывах ветра.
Д?МПФЕР, общее название устройств, используемых для гашения, успокоения (демпфирования) электрических колебаний или предотвращения механических колебаний, возникающих в машинах и
механизмах при их работе (движении). К демпферам относятся элементы рессорного подвешивания (гасители колебаний) на транспортных машинах, приспособления для прекращения колебаний струн музыкальных инструментов (напр., отдельные колодочки, прижимаемые к струнам), успокоители стрелок отсчётных устройств, катушки индуктивности, резисторы для гашения электрических колебаний и т. д.
Дважды в год следует смазывать все движущиеся части фурнитуры маслом. Ни в коем случае не использовать средства, разрушающие защиту от коррозии. В конструкциях пластиковых окон фурнитура представляет собой довольно сложный
механизм , который включает в себя множество различных деталей. Необходимо помнить, что от качества и надежности ее зависит срок эксплуатации всего ПВХ-окна.
«Ручник» почти всегда располагается между передними сиденьями автомобиля. Стояночная тормозная система обеспечивает удержание автомобиля от произвольного движения во время его стоянки. Включить ее можно, подняв ручник в верхнее положение, – при этом будут приведены «в действие» тормозные
механизмы задних колес, они заблокируются и обеспечат неподвижность машины.