Связанные понятия
База знаний (БЗ; англ. knowledge base, KB) — база данных, содержащая правила вывода и информацию о человеческом опыте и знаниях в некоторой предметной области (ISO/IEC/IEEE 24765-2010, ISO/IEC 2382-1:1993). В самообучающихся системах база знаний также содержит информацию, являющуюся результатом решения предыдущих задач.
Представление знаний — вопрос, возникающий в когнитологии (науке о мышлении), в информатике и в исследованиях искусственного интеллекта.
Имитационное моделирование (англ. simulation modeling) — метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему (построенная модель описывает процессы так, как они проходили бы в действительности), с которой проводятся эксперименты с целью получения информации об этой системе. Такую модель можно «проиграть» во времени, как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером...
Предме́тная о́бласть — множество всех предметов, свойства которых и отношения между которыми рассматриваются в научной теории. В логике — подразумеваемая область возможных значений предметных переменных логического языка.
Инженерия знаний (англ. knowledge engineering) — область наук об искусственном интеллекте, связанная с разработкой экспертных систем и баз знаний. Изучает методы и средства извлечения, представления, структурирования и использования знаний.
Упоминания в литературе
Проблема создания интеллектуальных систем остается актуальной и практически значимой. Создание
экспертных систем нового поколения позволит автоматизировать решение различных сложных интеллектуальных задач и повысит конкурентоспособность своих пользователей. Миварный подход позволил предложить новые модели и методы обработки информации и управления [1-22]. Миварные технологии накопления и обработки информации разрабатываются в России достаточно давно. Первые статьи были посвящены исследованию некоторых задач теории графов и разработке линейного матричного метода определения маршрута логического вывода на адаптивной сети правил [1-3]. Затем были работы по созданию миварного информационного пространства и эволюционных баз данных и правил [4-5]. Наиболее строгое формализованное и теоретическое оформление мивары получили в работах [6-7]. Затем были рассмотрены вопросы развития миваров [8-10] и их применения для создания различных тренажеров и обучающих систем [11-22]. Наиболее полно обзор теории и последних достижений миваров приведен в работах [4, 6, 10, 15, 18].
Проблема моделирования интеллектуальной деятельности человека для создания ИИ является актуальной и важной. Миварный подход позволяет предложить новые модели и методы обработки информации и управления. Будем понимать под системами искусственного интеллекта активные самообучающиеся логически рассуждающие системы. В прошлом веке были разработаны технологии создания
экспертных систем по отдельным узконаправленным предметным областям. Это было обусловлено сложностями формализованного описания требуемых предметных областей и тем, что системы логического вывода не могли обрабатывать более 20 объектов/правил. В то же время, получили развитие интеллектуальные пакеты прикладных программ (ИППП), которые позволяли решать в автоматизированном режиме задачи в разных областях, где требовались вычисления и конструирование алгоритмов решения задач. Технологии ИППП развиваются в миварах и сервисно-ориентированных архитектурах.
Экспертные системы имеют очень сложную структуру, которая в упрощенном варианте состоит из следующих элементов: пользователя (человека, для которого создается экспертная система), аналитика (буфера обмена информацией между экспертом и базой знаний), интерфейса пользователя (совокупности программ, осуществляющих общение пользователя с экспертной системой), базы знаний (совокупности знаний определенной области, которая понятна и пользователю, и эксперту), блока логического вывода, или решателя (особой программы, которая создает модель хода рассуждений эксперта на основе знаний), интеллектуального редактора базы знаний (программы, создающей базу данных при участии инженера), подсистемы объяснений (программы, которая дает пользователю ответы на его вопросы).
1) язык ЛИСП (Lisp – L ist I nformation S ymbol P rocessing), который был изобретен в 1962 г. Дж. Маккарти. Благодаря лИСПу возникла совершенно новая для программистов область деятельности – «искусственный интеллект». В настоящее время лИСП применяется в
экспертных системах , системах аналитических вычислений и т.п.;
Другим важным направлением в развитии моделирования субъектов в контексте неклассической научной рациональности явились
экспертные системы как вид математических моделей процедур принятия решений, адекватный представлениям парадигмы «субъект – субъект». Они выступают как средство формализации личного опыта и передачи его другим пользователям с обеспечением возможности идентификации автора знаний и процедур их получения.
Эвристические методы получили достаточно широкое распространение в экономическом анализе, дальнейший прогресс в этом направлении связан с разработкой и внедрением
экспертных систем .
Наряду с разработкой и использованием формализованных методов принятия решений логистика опирается на опыт квалифицированных снабженцев, производственников, сбытовиков, транспортников. С этой целью разрабатываются так называемые
системы экспертной компьютерной поддержки (или экспертные системы), позволяющие персоналу, не имеющему глубокой подготовки в логистике, принимать быстрые и достаточно эффективные решения.
Связанные понятия (продолжение)
Исчисление процессов или алгебра процессов — семейство связанных подходов к формальному моделированию параллельных систем.
Многоагентная система (МАС, англ. Multi-agent system) — это система, образованная несколькими взаимодействующими интеллектуальными агентами. Многоагентные системы могут быть использованы для решения таких проблем, которые сложно или невозможно решить с помощью одного агента или монолитной системы. Примерами таких задач являются онлайн-торговля, ликвидация чрезвычайных ситуаций, и моделирование социальных структур.
Обработка естественного языка (Natural Language Processing, NLP) — общее направление искусственного интеллекта и математической лингвистики. Оно изучает проблемы компьютерного анализа и синтеза естественных языков. Применительно к искусственному интеллекту анализ означает понимание языка, а синтез — генерацию грамотного текста. Решение этих проблем будет означать создание более удобной формы взаимодействия компьютера и человека.
Формальные методы занимаются приложением довольно широкого класса фундаментальных техник теоретической информатики: разные исчисления логики, формальных языков, теории автоматов, формальной семантики, систем типов и алгебраических типов данных.
Извлечение информации (англ. information extraction) — это задача автоматического извлечения (построения) структурированных данных из неструктурированных или слабоструктурированных машиночитаемых документов.
Анализ данных — область математики и информатики, занимающаяся построением и исследованием наиболее общих математических методов и вычислительных алгоритмов извлечения знаний из экспериментальных (в широком смысле) данных; процесс исследования, фильтрации, преобразования и моделирования данных с целью извлечения полезной информации и принятия решений. Анализ данных имеет множество аспектов и подходов, охватывает разные методы в различных областях науки и деятельности.
Визуализация данных — это представление данных в виде, который обеспечивает наиболее эффективную работу человека по их изучению. Визуализация данных находит широкое применение в научных и статистических исследованиях (в частности, в прогнозировании, интеллектуальном анализе данных, бизнес-анализе), в педагогическом дизайне для обучения и тестирования, в новостных сводках и аналитических обзорах. Визуализация данных связана с визуализацией информации, инфографикой, визуализацией научных данных, разведочным...
Агентное моделирование (англ. agent-based model (ABM))— метод имитационного моделирования, исследующий поведение децентрализованных агентов и то, как такое поведение определяет поведение всей системы в целом. В отличие от системной динамики аналитик определяет поведение агентов на индивидуальном уровне, а глобальное поведение возникает как результат деятельности множества агентов (моделирование «снизу вверх»).
Формализа́ция — представление какой-либо содержательной области (рассуждений, доказательств, процедур классификации, поиска информации, научных теорий) в виде формальной системы или исчисления.
Теория языков программирования (англ. programming language theory, PLT) — раздел информатики, посвящённый вопросам проектирования, анализа, определения характеристик и классификации языков программирования и изучением их индивидуальных особенностей. Тесно связана с другими ветвями информатики, результаты теории используются в математике, в программной инженерии и лингвистике.
Теория распознава́ния о́браза — раздел информатики и смежных дисциплин, развивающий основы и методы классификации и идентификации предметов, явлений, процессов, сигналов, ситуаций и т. п. объектов, которые характеризуются конечным набором некоторых свойств и признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно...
Онтоло́гия в информатике (новолат. ontologia от др.-греч. ὤν род. п. ὄντος — сущее, то, что существует и λόγος — учение, наука) — это попытка всеобъемлющей и подробной формализации некоторой области знаний с помощью концептуальной схемы. Обычно такая схема состоит из структуры данных, содержащей все релевантные классы объектов, их связи и правила (теоремы, ограничения), принятые в этой области. Этот термин в информатике является производным от древнего философского понятия «онтология».
Информацио́нный по́иск (англ. information retrieval) — процесс поиска неструктурированной документальной информации, удовлетворяющей информационные потребности, и наука об этом поиске.
Обучение с подкреплением (англ. reinforcement learning) — один из способов машинного обучения, в ходе которого испытуемая система (агент) обучается, взаимодействуя с некоторой средой. С точки зрения кибернетики, является одним из видов кибернетического эксперимента. Откликом среды (а не специальной системы управления подкреплением, как это происходит в обучении с учителем) на принятые решения являются сигналы подкрепления, поэтому такое обучение является частным случаем обучения с учителем, но учителем...
Нейронная сеть (биологическая нейронная сеть) — совокупность нейронов головного и спинного мозга центральной нервной системы (ЦНС) и ганглия периферической нервной системы (ПНС), которые связаны или функционально объединены в нервной системе, выполняют специфические физиологические функции.
Машинное обучение (англ. machine learning, ML) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи, а обучение в процессе применения решений множества сходных задач. Для построения таких методов используются средства математической статистики, численных методов, методов оптимизации, теории вероятностей, теории графов, различные техники работы с данными в цифровой форме.
Интеллектуальный агент в первом смысле — это часть технологии разработки операционных систем, и хотя алгоритмы, в нём используемые, могут базироваться на более сложных моделях, чем даже алгоритмы многих SCADA — систем, диапазон и методика его воздействия на состояние системы очень жестко детерминируется. «Интеллектуальный агент» во втором смысле так же не может быть полностью независимым, выполняя свои задачи, но методики его разработки на много порядков сложнее, в силу абсолютно иного уровня сложности...
Формальная верификация или формальное доказательство — формальное доказательство соответствия или несоответствия формального предмета верификации его формальному описанию. Предметом выступают алгоритмы, программы и другие доказательства.
Модель данных — это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует пользователь. Эти объекты позволяют моделировать структуру данных, а операторы — поведение данных.
Отображение онтологий (англ. ontology alignment или ontology matching) — это процесс установления соответствий между понятиями (концептами) нескольких онтологий. Множество таких соответствий и называется «отображением». Термин имеет разное значение в компьютерной, когнитивной областях и философии.
Абстракция данных — популярная и в общем неверно определяемая техника программирования. Фундаментальная идея состоит в разделении несущественных деталей реализации подпрограммы и характеристик, существенных для корректного её использования. Такое разделение может быть выражено через специальный «интерфейс», сосредотачивающий описание всех возможных применений программы.
Эволюционные алгоритмы — направление в искусственном интеллекте (раздел эволюционного моделирования), которое использует и моделирует процессы естественного отбора.
Сема́нтика в программировании — дисциплина, изучающая формализации значений конструкций языков программирования посредством построения их формальных математических моделей. В качестве инструментов построения таких моделей могут использоваться различные средства, например, математическая логика, λ-исчисление, теория множеств, теория категорий, теория моделей, универсальная алгебра. Формализация семантики языка программирования может использоваться как для описания языка, определения свойств языка...
Темпоральная логика (англ. temporal (от лат. tempus) logic) — это логика, в высказываниях которой учитывается временной аспект. Используется для описания последовательностей явлений и их взаимосвязи по временной шкале.
Системная инженерия — междисциплинарный подход и средства для создания успешных систем; междисциплинарный подход, охватывающий все технические усилия по развитию и верификации интегрированного и сбалансированного в жизненном цикле множества системных решений, касающихся людей, продукта и процесса, которые удовлетворяют потребности заказчика.
Реляционная модель данных (РМД) — логическая модель данных, прикладная теория построения баз данных, которая является приложением к задачам обработки данных таких разделов математики, как теория множеств и логика первого порядка.
Логи́ческое программи́рование — парадигма программирования, основанная на автоматическом доказательстве теорем, а также раздел дискретной математики, изучающий принципы логического вывода информации на основе заданных фактов и правил вывода. Логическое программирование основано на теории и аппарате математической логики с использованием математических принципов резолюций.
Автоматическое доказательство (англ. Automated Theorem Proving, ATP, а также Automated deduction) — доказательство, реализованное программно. В основе лежит аппарат математической логики. Используются идеи теории искусственного интеллекта. Процесс доказательства основывается на логике высказываний и логике предикатов.
Семанти́ческая паути́на (англ. semantic web) — это общедоступная глобальная семантическая сеть, формируемая на базе Всемирной паутины путём стандартизации представления информации в виде, пригодном для машинной обработки.
Обучение без учителя (самообучение, спонтанное обучение, англ. Unsupervised learning) — один из способов машинного обучения, при котором испытуемая система спонтанно обучается выполнять поставленную задачу без вмешательства со стороны экспериментатора. С точки зрения кибернетики, это является одним из видов кибернетического эксперимента. Как правило, это пригодно только для задач, в которых известны описания множества объектов (обучающей выборки), и требуется обнаружить внутренние взаимосвязи, зависимости...
Коннекционизм (англ. connectionism) — один из подходов в области искусственного интеллекта, когнитивной науки (когнитивистики), нейробиологии, психологии и философии сознания. Коннекционизм моделирует мыслительные или поведенческие явления процессами становления в сетях из связанных между собой простых элементов. Существует много различных форм коннекционизма, но наиболее общие используют нейросетевые модели. В рамках этого течения предпринимаются попытки объяснить умственные способности человека...
Зада́ча — проблемная ситуация с явно заданной целью, которую необходимо достичь; в более узком смысле задачей также называют саму эту цель, данную в рамках проблемной ситуации, то есть то, что требуется сделать. В первом значении задачей можно назвать, например, ситуацию, когда нужно достать предмет, находящийся очень высоко; второе значение слышно в указании: «Ваша задача — достать этот предмет». Несколько более жёсткое понимание «задачи» предполагает явными и определёнными не только цель, но и...
Распределённая система — система, для которой отношения местоположений элементов (или групп элементов) играют существенную роль с точки зрения функционирования системы, а, следовательно, и с точки зрения анализа и синтеза системы.
Декларати́вное программи́рование — это парадигма программирования, в которой задаётся спецификация решения задачи, то есть описывается, что представляет собой проблема и ожидаемый результат. Противоположностью декларативного является императивное программирование, описывающее на том или ином уровне детализации, как решить задачу и представить результат. В общем и целом, декларативное программирование идёт от человека к машине, тогда как императивное — от машины к человеку. Как следствие, декларативные...
Человеко-машинный интерфейс (ЧМИ) (англ. Human-machine interface, HMI) — широкое понятие, охватывающее инженерные решения, обеспечивающие взаимодействие человека-оператора с управляемыми им машинами.
Модели́рование — исследование объектов познания на их моделях; построение и изучение моделей реально существующих объектов, процессов или явлений с целью получения объяснений этих явлений, а также для предсказания явлений, интересующих исследователя.
Программная инженерия (англ. software engineering) — приложение систематического, дисциплинированного, измеримого подхода к разработке, функционированию и сопровождению программного обеспечения, а также исследованию этих подходов; то есть, приложение дисциплины инженерии к программному обеспечению (ISO/IEC/IEEE 24765-2010).
Глубокое обучение (глубинное обучение; англ. Deep learning) — совокупность методов машинного обучения (с учителем, с частичным привлечением учителя, без учителя, с подкреплением), основанных на обучении представлениям (англ. feature/representation learning), а не специализированным алгоритмам под конкретные задачи. Многие методы глубокого обучения были известны ещё в 1980-е (и даже ранее), но результаты были невпечатляющими, пока продвижения в теории искусственных нейронных сетей (предобучение нейросетей...
Концептуа́льная моде́ль (англ. conceptual model) — это модель, представленная множеством понятий и связей между ними, определяющих смысловую структуру рассматриваемой предметной области или её конкретного объекта.
Требования к программному обеспечению — совокупность утверждений относительно атрибутов, свойств или качеств программной системы, подлежащей реализации. Создаются в процессе разработки требований к программному обеспечению, в результате анализа требований.