Связанные понятия
Капилля́рность (от лат. capillaris — волосяной; отсюда происходит встречавшийся ранее в русскоязычной научной литературе термин воло́сность) или капиллярный эффект — явление подъема или опускания жидкости в капиллярах — узких трубках, каналах произвольной формы, пористых телах. В поле силы тяжести (или сил инерции, например, при центрифугировании пористых образцов) поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение...
Пересы́щенный пар — пар, давление которого превышает давление насыщенного пара при данной температуре. Может быть получен путём увеличения давления пара в объёме, свободном от центров конденсации (пылинок, ионов, капелек жидкости малых размеров и т. д.). Другой способ получения — охлаждение насыщенного пара при тех же условиях. В связи с последним способом получения насыщенного пара применительно к нему используется также наименование переохлаждённый пар. Кроме того, иногда в литературе встречается...
Конденса́ция паров (лат. condense «накопляю, уплотняю, сгущаю») — переход вещества в жидкое или твёрдое состояние из газообразного (обратный последнему процессу называется сублимация). Максимальная температура, ниже которой происходит конденсация, называется критической. Пар, из которого может происходить конденсация, бывает насыщенным или ненасыщенным.
Жи́дкость — вещество, находящееся в жидком агрегатном состоянии, занимающем промежуточное положение между твёрдым и газообразным состояниями.
Сма́чивание — физическое взаимодействие жидкости с поверхностью твёрдого тела или другой жидкости.
Упоминания в литературе
Поверхностное натяжение: из-за этого свойства жидкость стремится занимать наименьший объем, например,
капли в шарообразных формах.
При окраске по Грамму жгутики не видны, поэтому о подвижности бактерий можно судить, рассматривая живые микроорганизмы, приготовленные в виде препаратов «висячая» или «раздавленная»
капля , с помощью метода фазово-контрастной микроскопии, либо косвенно – по характеру роста в среде Пешкова (полужидком агаре). При этом неподвижные бактерии растут строго по уколу, а подвижные дают диффузный рост. Бактерии находятся в движении за счет вращательных движений жгутиков. Скорость движения бактерии зависит от особенностей расположения жгутиков и физико-химических свойств среды, при этом большое значение имеют ее вязкость, осмотическое давление и другие показатели. Таким образом, будет совершенно естественным, что бактерии, имеющие жгутики, расположенные термально, будут передвигаться гораздо быстрее, чем бактерии со жгутиками, расположенными по всей поверхности.
Конечно, при этом требуется статистическая обработка огромного количества замеров, сделанных с помощью лазерного сканирования отпечатков
капель , как и при другом методе определения плотности древней атмосферы, тоже связанном с вулканитами. Поскольку свежая базальтовая лава содержит огромные объемы газов, часть из них навсегда остается в виде пузырьков, заключенных в породе, такой как континентальные базальты Бунгал на кратоне Пилбара (2,74 млрд лет). Пузырьки же скапливаются на поверхности и подошве лавового языка, там, где вязкая лава, соприкасаясь с воздухом или холодными скалами, остывает быстрее. Размер навечно запечатанных в породе пузырьков на поверхности лавового языка прямо зависит от атмосферного давления, к которому прибавляется вес лавового пласта при расчетах величины лунок на его подошве. Зная мощность пласта и плотность базальтовой лавы (2650 кг/м3) и измерив самые крупные лунки на его поверхности и наименьшие на подошве, можно вычислить плотность атмосферы. Чем ниже плотность атмосферы, тем меньше разница в размере пузырьков внизу и наверху. Древние полости, конечно, позднее заполнились вторичным аморфным кремнеземом (его мы видим сейчас как вкрапления красивых агатов и сердоликов), кальцитом или хлоритом, превратившись в каменные миндалины. Расчеты, сделанные по соотношению средних величин таких миндалин, снова показывают, что архейская атмосфера была в два раза менее плотной. И скорее всего, не могла состоять из углекислого газа или азота, но могла быть насыщена метаном.
Расправление хоботка и приём пищи. Приём пищи мухой начинается с расправления сложенного хоботка. Расправление хоботка стимулируют хеморецепторы хоботка и лапок, ответственные за восприятие химических соединений. Оральный диск, расположенный на конце хоботка, состоит из двух лопастей (лабеллумов), снабжённых системой так называемых псевдотрахейных каналов с порами, и «зубов». Процесс расправления орального диска представляет сложный акт и включает шесть основных положений, обусловленных консистенцией поглощаемой пищи (рис. 5). В положении покоя псевдотрахейная система спрятана, так как вентральные поверхности лопастей сложены друг с другом. Во втором положении (фильтрационном) оральный диск расправляется, плотно прижимается к поверхности кормового субстрата, а гибкая псевдотрахейная система заполняет все его неровности и функционирует как фильтр. В третьем, чашеобразном положении, края лабеллумов немного загибаются вниз. При переходе к четвёртому положению зона зубов выворачивается и оказывается в одной плоскости с поверхностью орального диска. Дальнейшее отгибание лабеллумов наружу отключает от работы псевдотрахейную систему вследствие потери контакта с субстратом и выдвигает «зубы», при покачивании хоботка они царапают и измельчают субстрат. Дальнейшее выворачивание лабеллумов выключает из работы и «зубы» и приближает вплотную к питательному субстрату ротовое отверстие (питьевое положение). Лабораторные наблюдения показывают, как муха пользуется своим хоботком. С помощью фильтрующего положения хоботка муха потребляет раствор сахара с взвешенными частицами, растекающийся в виде тонкой плёнки по поверхности. Более крупные
капли сиропа, молока и сыворотки поглощаются хоботком в чашеобразном положении. Сахар и засохшие сгустки крови утилизируются посредством соскрёбывания зубами с периодическим увлажнением слюной. Субстрат жидкой или полужидкой консистенции, типа воды и жидких фекалий, всасывается хоботком с питьевым положением орального диска.
Учеными разных стран в разное время установлено, что чем мягче вода в той или иной местности, т. е. чем меньше в ней микроэлементов и минеральных солей, тем выше риск возникновения у людей сердечно-сосудистых заболеваний, главным образом ишемической болезни сердца и артериальной гипертонии. И наоборот, у тех кто живет в районах с жесткой водой, показатели деятельности сердечно-сосудистой системы лучше: ниже артериальное давление и уровень холестерина в крови, реже частота сердечных сокращений. Не обязательно Пейте воду в больших количествах, для того чтобы почувствовать на себе ее оздоровительное действие, существует способ лечения без употребления воды. Наверное, многие ощущали вблизи водоема или водопада прилив сил, улучшение общего состояния организма. После короткого времени, проведенного у бурлящей воды, становится лучше и спокойнее. Это результат действия ионов воды. При разбивании
капель о какую-либо поверхность высвобождаются заряженные частицы – ионы, которые, попадая в кровь человека в процессе дыхания, благотворно влияют на организм, в частности благодаря им очищается кровь и укрепляется иммунитет человека – основа его защиты. Это еще один из способов борьбы с аллергией, не с ее симптомами и последствиями, такими как сыпь, чихание и прочее, а действительно с самой причиной заболевания. Подышав минут 5—8 на расстоянии 0,5 м от максимально сильной струи из-под крана, разбивающейся о раковину, вы можете освежить кровь, облегчить дыхание (особенно при насморке и гриппе, а иногда и при астматических приступах), унять головную боль. Вблизи разбивающихся струй образуется облачко мельчайших водяных брызг, возникает микрозона повышенной ионизации. Именно она и обладает целительными свойствами.
Связанные понятия (продолжение)
Переохлаждённая жидкость — жидкость, имеющая температуру ниже температуры кристаллизации при данном давлении. Является одним из неустойчивых (метастабильных) состояний жидкости, наряду с перегретой жидкостью.
Поверхность раздела фаз — граничная поверхность между любыми двумя контактирующими фазами термодинамической системы. Например, в трёхфазной системе лёд — вода — воздух существуют три поверхности раздела (между льдом и водой, между льдом и воздухом, между водой и воздухом), вне зависимости от того, сколько кусков льда имеется в системе.
Тиксотропия (тиксотропность) (от греч. θίξις — прикосновение и τροπή — изменение) — способность субстанции уменьшать вязкость (разжижаться) от механического воздействия и увеличивать вязкость (сгущаться) в состоянии покоя.
Агрега́тное состоя́ние вещества (от лат. aggrego «присоединяю») — физическое состояние вещества, зависящее от соответствующего сочетания температуры и давления.
Гомоге́нная систе́ма (от др.-греч. ὁμός «равный, одинаковый» + γένω «рождать») — однородная система, химический состав и физические свойства которой во всех частях одинаковы или меняются непрерывно (между частями системы нет поверхностей раздела). В гомогенной системе из двух и более химических компонентов каждый компонент распределен в массе другого в виде молекул, атомов, ионов. Составные части гомогенной системы нельзя отделить друг от друга механическим путём.
Теплопередача — физический процесс передачи тепловой энергии от более горячего тела к менее горячему, либо непосредственно (при контакте), или через разделяющую перегородку из какого-либо материала. Когда физические тела одной системы находятся при разной температуре, то происходит передача тепловой энергии, или теплопередача от одного тела к другому до наступления термодинамического равновесия. Самопроизвольная передача тепла всегда происходит от более горячего тела к менее горячему, что является...
Вя́зкость (вну́треннее тре́ние) — одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. В результате работа, затрачиваемая на это перемещение, рассеивается в виде тепла.
Когезия (англ. cohesion от лат. cohaesus — «связанный», «сцепленный») — связь между одинаковыми молекулами (атомами, ионами) внутри тела в пределах одной фазы. Когезия характеризует прочность тела и его способность противостоять внешнему воздействию.
Опалесце́нция — оптическое явление резкого усиления рассеяния света чистыми жидкостями и газами при достижении критической точки, а также растворами в критических точках смешения. Причиной является резкое возрастание сжимаемости вещества, сопровождаемое усилением флуктуаций плотности (в том числе микрочастиц в растворах), на которых и происходит рассеяние света. Это явление также известно, как критическая опалесценция.
Водяной пар — газообразное агрегатное состояние воды. Не имеет цвета, вкуса и запаха. Водяной пар — в чистом виде или в составе влажного газа, — находящийся в термодинамическом равновесии с поверхностью влажного вещества, называют равновесным водяным паром.
Двойной электрический слой (межфазный) (ДЭС) — слой ионов, образующийся на поверхности частиц в результате адсорбции ионов из раствора, диссоциации поверхностного соединения или ориентирования полярных молекул на границе фаз. Ионы, непосредственно связанные с поверхностью, называются потенциалоопределяющими. Заряд этого слоя компенсируется зарядом второго слоя ионов, называемых противоионами.
Мембрана (от лат. membrana — кожица) — тонкая гибкая плёнка или пластинка, обычно закреплённая по периметру.
Термическое напыление (также известное как термическое испарение) — широко распространённый метод вакуумного напыления. Исходный материал испаряется в вакууме. Вакуум позволяет частицам пара конденсироваться непосредственно на напыляемом изделии (подложке). Термическое напыление используется в микротехнологии и для изготовления таких изделий, как металлизированная пластиковая плёнка или тонированные стёкла.
Стеклообразное состояние — твёрдое аморфное метастабильное состояние вещества, в котором нет выраженной кристаллической решётки, условные элементы кристаллизации наблюдаются лишь в очень малых кластерах (в так называемом «среднем порядке»). Обычно это смеси (переохлаждённый ассоциированный раствор), в которых создание кристаллической твёрдой фазы затруднено по кинетическим причинам.
Нагрев — искусственный либо естественный процесс повышения температуры материала/тела, либо за счёт внутренней энергии, либо за счёт подведения к нему энергии извне. Для подведения энергии извне используется специальное устройство — нагреватель (нагревательный элемент), того или иного вида и конструкции.
Пло́тность во́здуха — масса газа атмосферы Земли на единицу объема или удельная масса воздуха при естественных условиях. Плотность воздуха является функцией от давления, температуры и влажности. Обычно, стандартной величиной плотности воздуха на уровне моря в соответствии с Международной стандартной атмосферой принимается значение 1,2250 кг/м³, которая соответствует плотности сухого воздуха при 15 °С и давлении 101330 Па.
Испаре́ние — процесс фазового перехода вещества из жидкого состояния в парообразное или газообразное, происходящий на поверхности вещества. Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое). При испарении с поверхности жидкости или твёрдого тела вылетают (отрываются) частицы (молекулы, атомы), при этом их кинетическая энергия должна быть достаточна для совершения работы, необходимой для преодоления сил притяжения со стороны других молекул жидкости...
Углеро́дная нанопе́на — аллотропная модификация углерода, представляющая собой мельчайшую сетку из углеродных нанотрубок и кластеров.
Температу́ра стеклова́ния — температура, при которой не кристаллизующееся или не успевающее закристаллизоваться вещество становится твёрдым, переходя в стеклообразное состояние. Обычно обозначается — Tg .
Фа́зовая диагра́мма воды — графическое отображение равновесного состояния фаз воды (жидкости, водяного пара и различных модификаций льда). Строится в системе координат температура—давление.
Нью́тоновская жи́дкость (названная так в честь Исаака Ньютона) — вязкая жидкость, подчиняющаяся в своём течении закону вязкого трения Ньютона, то есть касательное напряжение и градиент скорости в такой жидкости линейно зависимы. Коэффициент пропорциональности между этими величинами известен как вязкость.
Термодинами́ческая фа́за — гомогенная часть гетерогенной системы, ограниченная поверхностью раздела. Менее строго, но более наглядно фазами называют «гомогенные части системы, отделенные от остальных частей видимыми поверхностями раздела». При этом совокупность отдельных гомогенных частей системы, обладающих одинаковыми свойствами, считается одной фазой (например, совокупность кристаллов одного вещества или совокупность капелек жидкости, взвешенных в газе и составляющих туман). Каждая фаза системы...
Теплово́е движе́ние — процесс хаотичного (беспорядочного) движения частиц, образующих вещество. Чем выше температура, тем больше скорость движения частиц. Чаще всего рассматривается тепловое движение атомов и молекул.
По́ристость (устар. скважность) — доля объёма пор в общем объёме пористого тела .
Фотодиссоциация (или фотолиз) — химическая реакция, при которой химические соединения разлагаются под действием фотонов электромагнитного излучения.
Золь (также лиозоль, коллоидный раствор, англ. sol от лат. solutio — раствор) — высокодисперсная коллоидная система (коллоидный раствор) с жидкой (лиозоль) или газообразной (аэрозоль) дисперсионной средой, в объёме которой распределена другая (дисперсная) фаза в виде капелек жидкости, пузырьков газа или мелких твёрдых частиц, размер которых лежит в пределе от 1 до 100 нм (10−9—10−7м).
Подробнее: Золи
Плавле́ние — это процесс перехода тела из кристаллического твёрдого состояния в жидкое, то есть переход вещества из одного агрегатного состояния в другое. Плавление происходит с поглощением теплоты плавления и является фазовым переходом первого рода, которое сопровождается скачкообразным изменением теплоёмкости в конкретной для каждого вещества температурной точке превращения — температура плавления.
Пе́на — дисперсная система с газовой дисперсной фазой и жидкой или твёрдой дисперсионной средой.
Деионизированная вода (деионизованная вода, деминерализованная вода, англ. deionized water, DI water, dimineralized water, DM water) — вода, очищенная от ионов примесей. Такая вода имеет большое удельное сопротивление.
Суспе́нзия (от лат. suspensio, подвешивание) — это взвесь, в которой твёрдое вещество равномерно распределено в виде мельчайших частиц в жидком веществе во взвешенном (не осевшем) состоянии.
Диффу́зия (лат. diffusio «распространение, растекание, рассеивание; взаимодействие») — процесс взаимного проникновения молекул или атомов одного вещества между молекулами или атомами другого, приводящий к самопроизвольному выравниванию их концентраций по всему занимаемому объёму. В некоторых ситуациях одно из веществ уже имеет выравненную концентрацию и говорят о диффузии одного вещества в другом. При этом перенос вещества происходит из области с высокой концентрацией в область с низкой концентрацией...
Аэрографит представляет собой синтетическую пену, состоящую из трубчатых волокон углерода. Плотность материала составляет 0,18 мг/см3 (0,18 кг/м3), что позволяет назвать данный материал самым легким на сегодняшний день. Аэрографит был разработан объединенной командой университета имени Христиана Альбрехта и Гамбургского технологического университета. Первое сообщение о новом материале было опубликовано в июне 2012 г.
Зерно (иногда употребляется термин кристаллит) — минимальный объём кристалла, окружённый высокодефектными высокоугловыми границами, в поликристаллическом материале.
Вискозиметр (от лат. viscosus — вязкий) — прибор для определения динамической или кинематической вязкости вещества. В системе единиц СГС и в СИ динамическая вязкость измеряется соответственно в пуазах (П) и паскаль-секундах (Па·с), кинематическая — соответственно в стоксах (Ст) и квадратных метрах на секунду (м²/с).
Дисперги́рование (от лат. dispersio — рассеяние), эмульгирование, эмульга́ция (от лат. emulgeo — дою, выдаиваю) — тонкое измельчение твёрдых тел или жидкостей, в результате чего получают порошки, суспензии, эмульсии. При диспергировании твёрдых тел происходит их механическое разрушение.
Ио́нное распыле́ние — эмиссия атомов с поверхности твёрдого тела при его бомбардировке тяжёлыми заряженными или нейтральными частицами. В случае, когда речь идёт о бомбардировке отрицательно заряженного электрода (катода) положительными ионами, используется также термин «катодное распыление».
Пористое стекло — стеклообразный пористый материал с губчатой структурой и содержанием SiO2 около 96 масс.%. Пористое стекло является результатом термической и химической обработки стекол особого состава.
Краевой угол смачивания , также угол смачивания, угол контакта (англ. Contact angle) — угол, который образуется между касательной, проведённой к поверхности фазы жидкость-газ и твёрдой поверхностью с вершиной, располагающейся в точке контакта трёх фаз, и условно измеряемый всегда внутрь жидкой фазы. Обозначается греческой буквой тета — θ.
Электростатическое поле — поле, созданное неподвижными в пространстве и неизменными во времени электрическими зарядами (при отсутствии электрических токов).
Дисперсность — физическая величина, характеризующая размер взвешенных частиц в дисперсных системах.
Удельная поверхность — усреднённая характеристика размеров внутренних полостей (каналов, пор) пористого тела или частиц раздробленной фазы дисперсной системы.
Мыльный пузырь — тонкая многослойная плёнка мыльной воды, наполненная воздухом, обычно в виде сферы с переливчатой поверхностью. Мыльные пузыри обычно существуют лишь несколько секунд и лопаются при прикосновении или самопроизвольно. Их часто используют в своих играх дети.
Лиофильность и лиофобность (от др.-греч. λύω — растворяю, φιλέω — люблю и φόβος — страх) — характеристики способности веществ или образуемых ими тел к межмолекулярному взаимодействию с жидкостями. Интенсивное взаимодействие, т. е. достаточно сильное взаимное притяжение молекул вещества (тела) и контактирующей с ним жидкости, характеризует лиофильность; слабое взаимодействие — лиофобность. В наиболее практически важном случае взаимодействия вещества с водой лиофильность и лиофобность называется гидрофильностью...
Во́здух — смесь газов (главным образом азота и кислорода — 98—99 % в сумме и зависит от влажности (концентрации водяного пара), а также аргона, углекислого газа, водорода), образующая земную атмосферу. Воздух необходим для нормального существования на Земле живых организмов. Кислород, содержащийся в воздухе, в процессе дыхания поступает в клетки организма и используется в процессе окисления, в результате которого происходит выделение необходимой для жизни энергии (метаболизм, аэробы). В промышленности...
Упоминания в литературе (продолжение)
Объемы воды, сконцентрированные над сушей, огромны. Каждое облако содержит несколько тонн воды. Выпадение осадков – это только часть процесса кругооборота воды в природе, а перемещение облаков над сушей является регулятором перераспределения влаги и тепла в атмосфере планеты. Подсчитано, что одна
капля весом 50 мг при движении сверху вниз пронизывает около 16 л воздуха, попутно очищая его. Также установлено, что 1 л дождевой воды промывает около 300 000 л воздуха, поглощая содержащиеся в нем вредные примеси – пыль, соль и химические элементы.
Когда организм функционирует правильно, спектр энергии у каждой клетки или органа отражает здоровое их состояние и способствует потоку жизненной силы через клетки и органы. Но помимо живительной, созидательной энергии существует энергия неживая. Она не способствует потоку жизненной силы. При накоплении большого количества такой энергии происходит нарушение энергетического баланса, приводящее к нарушению функций клеток и органов. Если неживая энергия сохраняется в определенных местах в течение длительного времени, организм задерживает большее, чем необходимо, количество жиров, жидкости, токсинов, утрачивает естественную способность контролировать обмен веществ. Накопление неживой энергии усугубляет ситуацию. Загрязняется внутриклеточная и межклеточная жидкость, нарастает количество вредоносных положительных ионов, и застойные явления усиливаются. Лимфа и кровь загустевают. Белые и красные кровяные тельца слипаются – это хорошо видно в
капле живой крови под микроскопом. Возникают энергетические блоки, то есть препятствия на пути свободного потока энергии, и далее, как следствие, – патологические очаги в органах.
К 40–45 годам жизни человека ядро достаточно уплотняется и становится менее прозрачным. Прозрачность теряется за счет появления примесей в структурах клеток и волокон. Причин может быть много: нарушение обмена веществ в организме, наличие сопутствующей патологии, что ускоряет старение прозрачной линзы глаза. Это приводит к снижению остроты зрения, появлению «пленки» или «паутинки» перед глазами. Со временем лучи света перестают проникать на сетчатку и глаз становится слепым. Поэтому важно вовремя обращаться за помощью к окулисту. Для замедления процесса старения используются глазные
капли , а лучшим способом является замена потемневшего хрусталика на прозрачную линзу (искусственный хрусталик).
Когда организм функционирует правильно, спектр энергии у каждой клетки или органа отражает здоровое их состояние и способствует потоку жизненной силы через клетки и органы. Но помимо живительной, созидательной энергии существует энергия неживая. Она не способствует потоку жизненной силы в клетках и органах. При накоплении большого количества такой энергии происходит нарушение энергетического баланса, приводящее к нарушению функций клеток и органов. Если неживая энергия сохраняется в определенных местах в течение длительного времени, организм задерживает большее, чем необходимо, количество жиров, жидкости, токсинов и утрачивает естественную способность контролировать обмен веществ. Накопление неживой энергии усугубляет ситуацию. Энергия концентрируется, загрязняется внутриклеточная и межклеточная жидкость, нарастает количество вредоносных положительных ионов, и застойные явления усиливаются. Лимфа и кровь загустевают. Белые и красные кровяные тельца слипаются – это хорошо видно в
капле живой крови под микроскопом. В результате возникают энергетические блоки, то есть препятствия на пути свободного потока энергии, и далее – патологические очаги в органах, болезни.
После успехов Пастера перед учеными встала задача: объяснить происхождение жизни, раз уж жизнь есть, а самозарождения в экспериментах не происходит. Первые успехи в этом направлении были достигнуты А. И. Опариным и Джоном Холдейном в 1920-х годах. Опарин работал с коллоидными растворами белков и полисахаридов и обнаружил, что в некоторых условиях растворенные белки собираются в компактные
капли – коацерваты, – которые могут расти, поглощая растворенные вещества из внешней среды, и делятся подобно клеткам. Также он предположил, что атмосфера древней Земли была бескислородной и поэтому в ней мог протекать абиогенный синтез органических веществ. Холдейн развил и конкретизировал идею «первичного бульона» – древнего океана, взаимодействующего с бескислородной атмосферой, в котором под действием разрядов молний, солнечного ультрафиолета и вулканических извержений идут разнообразные химические реакции, приводящие к образованию сложных органических молекул, а те, в свою очередь, образуют коацерватные капли, из которых со временем развиваются клетки.
Желтая ткань состоит из крупных клеток, плазма которых заполнена
каплями веществ, имеющих желтоватую окраску. Происхождение и природа этого вещества, а вместе с тем и функция самой ткани, не вполне ясны. Некоторые исследователи считают эту ткань местом накопления запасных питательных материалов, наподобие жировой ткани позвоночных. И действительно, включения клеток желтой ткани содержат жир, белок и вещество, сходное с гликогеном (животным крахмалом). В то же время известно, что эта ткань содержит большое количество мочевой кислоты, что инородные вещества, введенные в виде растворов в полость тела (краски), скапливаются в клетках хлорагогенной ткани, и что конечные азотистые продукты обмена веществ, подлежащие выведению из организма, обычно имеют желтый или бурый цвет. Все это заставляет думать о выделительной функции этой ткани.
Вертикальные швы менее удобно сваривать, так как сила тяжести увлекает
капли электродного металла вниз. Вертикальные швы следует выполнять короткой дугой снизу вверх. При этом капли металла легче переходят в шов, а образующийся кратер в виде полочки удерживает очередные капли металла от отекания вниз. Сварку можно вести и сверху вниз. При этом дугу следует зажигать при положении электрода, перпендикулярном плоскости изделия. После образования первых капель металла электрод наклоняют вниз и сварку выполняют возможно короткой дугой. Рекомендуется применять электроды диаметром 4-5 мм при несколько пониженном сварочном токе (150-170 А).
Выбирая лампу данного рода с различной мощностью, можно регулировать степень освещения растений. Специальное внешнее покрытие делает лампу устойчивой против
капель воды, лампа не будет лопаться если при орошении растений капли падают на нее.
Если нарушился уровень расположения кромок или кромки, не прихваченные точками, налезают друг на друга, нужно подрихтовать последнюю точку. Если несоединенные точками кромки слишком толстые, необходимо полностью охладить последнюю точку, что приведет к максимальной усадке металла. Если этого окажется недостаточным, следует произвести сварку более близко расположенными точками, расплавляя небольшие
капли присадочного металла.
Внутренняя поверхность век и наружная поверхность глазного яблока спереди покрыты гладкой блестящей, полупрозрачной оболочкой – конъюнктивой. Она выполняет защитную, механическую, барьерную, увлажняющую, всасывательную и питательную функции. Все отделы конъюнктивы образуют так называемый конъюнктивальный мешок, вместимость которого при сомкнутых веках до 2
капель жидкости. Большинство лекарственных препаратов (мази, капли) вводят в него.
Так как при таком теплообмене между хладагентом и воздухом используются трубопровод и ребра, нужно, чтобы на контактной поверхности с воздухом не оседали вода и пыль. Образование льда и инея на испарителе происходит также и на частях ребер. При достижении теплого воздуха до ребер, охлаждаясь ниже температуры росы, на ребрах появляются водяные
капли .
Более или менее устойчивых сроков начала и окончания соковыделения у берез нет, они зависят от сочетания многих факторов. Поэтому фазу начала соковыделения устанавливают, прокалывая шилом кору с захватом древесины на глубину 1,0…1,5 см. День появления из проколов первых
капель сока открывает фазу соковыделения. Началом соковыделения считается тот день, когда в эту фазу вступит не менее 10 % экземпляров, массовое сокодвижение – при 50 %.
Составляющие окружающей среды, специфические для данного вида живого организма, обеспечивающие его развитие и воспроизводство характеризуют экологическую нишу этого вида. Такой нишей могут быть океан, опушка леса,
капля воды. Совокупность неорганической основы, климатических условий (экотоп) и живых организмов (биоценоз) представляет экосистему (рис. 2). В экотоп входят климат, вода, почва, элементы ландшафта, воздух. Биоценоз составляют живые организмы, (зооценоз), растения (фитоценоз) и микроорганизмы (микробиоценоз). Для полноты компонентов составляющих экотоп, необходимо включить солнечное излучение, электромагнитный и акустический фон, а также, космическое излучение. Биоценоз и экотоп эволюционируют, воздействуя друг на друга через систему связей. Эти связи показаны стрелками, и механизм этого взаимодействия и представляет предмет экологии.
Время свертывания крови. Определение времени свертывания цельной нестабилизированной крови осуществляется непосредственно у постели больного. Иглу без шприца вводят в локтевую вену. Первые
капли крови промокают ватным тампоном и собирают по 1 мл крови в 2 сухие пробирки. Включив секундомер, ставят пробирки в водяную баню при температуре 37 °C. Спустя 2–3 мин., а затем каждые 30 с пробирки ставят в наклон. Вычислив, просчитывают средний результат. В норме время свертывания – время возникновения сгустка крови в каждой из пробирок – составляет 5—10 мин. Если время свертывания больше 10 мин., это говорит о существенных патологиях в системе гемокоагуляции и чаще указывает на:
Поэтому при использовании кремниевой воды рекомендуется не сливать нижние 3–4 см. В качестве затравки для кристаллизации воды можно использовать «
Капли Довганя». 10 таких капель в течение 10 минут могут структурировать 200 мл питьевой воды.
3. Серный ангидрид образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раст вор серной кислоты в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов химических предприятий отмечается при низкой облачности и высокой влажности воздуха. Листовые пластинки растений, произрастающих на расстоянии менее 1 км от таких предприятий, обычно бывают густо усеяны мелкими некротическими пятнами, образовавшимися в местах оседания
капель серной кислоты. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки миллионов тонн серного ангидрида.
АпоС-III активирует липопротеидную липазу крови, расщепляющую ХМ и липопротеиды очень низкой плотности (ЛПОНП). Избыток свободного ХС в клетках может эстерифицироваться свободными жирными кислотами и далее сохраняться в клетке в виде липидных
капель . С помощью специализированных белковых транспортеров ХС-эстеры далее переносятся в печень, вступают в связь с апопротеинами или выделяются с желчью.
Устанавливается над аквариумом или за ним в виде стакана. Принцип его работы следующий: вода со дна аквариума поступает через эрлифт в коробку с пористым материалом, фильтруется через него и
каплями стекает обратно в аквариум. Если фильтрующий материал забивается, вода начинает переливаться в стакан. В этом случае необходимо остановить работу компрессора, вынуть фильтр и тщательно промыть его в проточной воде, а затем вставить обратно в коробку.
У таких больных любое нарушение режима может служить причиной повышения внутриглазного давления. Особенно опасно применение любых сосудорасширяющих средств. Увеличение наполнение сосудистого тракта даже на одну
каплю крови повышает внутриглазное давление до 38 мм рт. ст.
У таких больных любое нарушение режима может служить причиной повышения внутриглазного давления. Особенно опасно применение любых сосудорасширяющих средств. Увеличение наполнения сосудистого тракта даже на одну
каплю крови повышает внутриглазное давление до 38 мм рт. ст.
Теория Лапласа, согласно которой Земля была изначально холодной, сохраняла популярность на протяжении почти столетия, хотя ей и противоречили некоторые астрономические данные (например, вращение Венеры и Урана в сторону, обратную всем остальным планетам и Солнцу). Однако ближе к концу XIX века, когда было твердо установлено, что температура в недрах нашей планеты чрезвычайно высока (по современным данным, свыше 1 000 °C), большинство ученых стало разделять мнение об изначально горячей Земле – огненном шаре, постепенно остывающем с поверхности. Поиски источника этого раскаленного вещества вполне естественно было начать с Солнца. В начале ХХ века астрономы Т. Чемберлен и Ф. Мультон выдвинули, а Дж. Джинс математически обосновал планетезимальную теорию происхождения планет Солнечной системы. Суть ее состоит в том, что некогда поблизости от Солнца («поблизости» – это по космическим масштабам) прошла другая звезда. При этом взаимное притяжение вырвало из каждой из них по гигантскому протуберанцу звездного вещества, которые, соединившись, составили «межзвездный мост», распавшийся затем на отдельные «
капли » – планетезимали. Остывающие планетезимали и дали начало планетам и их спутникам.
а) атмосферную воду (в виде пара, взвешенных
капель и кристалликов льда);
Помогает полоскание полости рта прохладной водой из глубокого чистого колодца. В стакан воды можно добавить 2
капли настойки прополиса, в этом случае будет более выражен противовоспалительный эффект от процедуры.
Гиподерма тоже состоит из сети волокон (коллагеновых, эластиновых и ретикулярных), в петлях которых находятся скопления крупных жировых клеток, содержащих большие
капли жира. Петли волокнистых структур гиподермы более крупные, чем в самой дерме.
Следует, однако, иметь в виду, что если вывод о том, что 20 млрд лет назад вся Вселенная представляла собой сверXIIлотную «ядерную»
каплю , является правильным (а это, по-видимому, так), всякие рассуждения о «начале» и тем более «сотворении» мира являются ненаучными. Вообще, само понятие «время» при таких огромных плотностях может потерять всякий наглядный смысл. Столь же бессмысленно говорить в таких условиях о каком-то «начале времени». Здесь должны были действовать законы квантовой теории тяготения – науки, которая пока еще не создана. Излишне подчеркивать, что в условиях такой Вселенной – сверXIIлотной «частицы» – никакая жизнь невозможна.
К ней относятся ледники, океаны, моря, реки, озера, почвенная влага, подземные воды и водохранилища. В целом объем гидросферы составляет около 1,5 млрд. км3. В атмосфере, окружающей Землю, вода содержится в виде облаков, тумана, пара, кристаллов снега и
капель дождя. Гидросфера находится в тесном взаимодействии с биосферой, атмосферой и литосферой.
• Наберите полную ванну воды, температура которой не должна превышать 33 °C. Растворите в воде 1 кг морской соли и 50 г хвойного экстракта, можно добавить 6
капель эфирного масла шалфея. Принимать ванну 15–20 минут. Курс лечения -10 ванн, после этого сделайте перерыв на 1 неделю, затем курс можно возобновить.
Требуется: 4 ст. л. оливкового масла, по 2 ст. л. масла какао и эмульгирующего воска, по 1 ст. л. пчелиного воска и персикового масла, 2–3
капли духов.