Связанные понятия
Голова быка — планарный неориентированный граф с 5 вершинами и 5 рёбрами в форме треугольника с двумя непересекающимися висячими рёбрами.
Говорят, что семейство графов имеет ограниченное расширение, если все его миноры ограниченной глубины являются редкими графами. Много естественных семейств редких графов имеют ограниченное расширение. Близкое, но более сильное свойство, полиномиальное расширение, эквивалентно существованию теорем разбиения для этих семейств. Семейства с этими свойствами имеют эффективные алгоритмы для задач, в которые входят задача поиска изоморфного подграфа и проверка моделей для теории первого порядка для графов...
Подробнее: Ограниченное расширение графа
Блоковый многогранник — это (многомерный) многогранник, образованный из симплекса путём многократного приклеивания другого симплекса к одной из его фасет.
Граф дружеских отношений (или граф датской мельницы, или n-лопастной вентилятор) Fn — это планарный неориентированный граф с 2n+1 вершинами и 3n рёбрами.
В визуализации графов и геометрической теории графов число наклонов графа — это минимальное возможное число различных коэффициентов наклона рёбер в рисунке графа, в котором вершины представляются точками евклидовой плоскости, а рёбрами являются отрезки, которые не проходят через вершины, неинцидентные этим рёбрам.
Подробнее: Число наклонов графа
Преобразование треугольник-звезда — способ эквивалентного преобразования пассивного участка линейной электрической цепи — «треугольника» (соединения трёх ветвей, которое имеет вид треугольника, сторонами которого являются ветви, а вершинами — узлы), в «звезду» (соединение трёх ветвей, которые имеют один общий узел). Эквивалентность «треугольника» и «звезды» обусловлена тем, что при одинаковых напряжениях между одноименными выводами электрической цепи токи, которые втекают в одноименные выводы, а...
Неориентированный
граф G двойственно хордален, если гиперграф его максимальных клик является гипердеревом. Имя происходит из факта, что граф хордален тогда и только тогда, когда гиперграф его максимальных клик двойственен гипердереву. Первоначально эти графы были определены по максимальному соседству и имеют ряд различных описаний. В отличие от хордальных графов свойство двойственной хордальности не наследуется, то есть, порождённые подграфы двойственного хордального графа не обязательно двойственно...
В теории графов свободный от t-биклик граф — это граф, в котором нет полных двудольных графов с 2t вершинами Kt,t в качестве подграфов. Семейство графов является свободным от биклик, если существует число t, такое, что все графы в семействе свободны от t-биклик. Семейства свободных от бициклов графов образуют одно из наиболее общих типов семейств разреженных графов. Они возникают в задачах инцидентности в комбинаторной геометрии, а также используются в теории параметрической сложности.
Слабая раскраска — это специальный вид разметки графа. Слабая k-раскраска графа G = (V, E) назначает цвета c(v) ∈ {1, 2, ..., k} всем вершинам v ∈ V, так что каждая неизолированная вершина смежна по меньшей мере одной вершине другого цвета. В формальных обозначениях, для любой неизолированной вершины v ∈ V существует вершина u ∈ U с {u, v} ∈ E и c(u) ≠ c(v).
Флаг в геометрии многогранников — последовательность граней (различной размерности) абстрактного многогранника, в которой каждая предыдущая грань содержится в последующей и последовательность содержит ровно по одной грани каждой размерности.
Говорят, что ориентированный
граф апериодичен, если нет целого числа k > 1, делящего длину любого цикла графа. Эквивалентно, граф апериодичен, если наибольший общий делитель длин его циклов равен единице. Этот наибольший общий делитель для графа G называется периодом графа G.
Бабочка имеет диаметр 2 и обхват 3, радиус 1, хроматическое число 3, хроматический индекс 4 и является как эйлеровым, так и графом единичных расстояний. Граф является вершинно 1-связным графом и рёберно 2-связным.
Жёсткость графа — мера связности графа: граф G t-жёсток при некотором вещественном t, если для любого целого k > 1 нельзя разбить граф G на k различных компонент связности путём удаления менее чем tk вершин. Например, граф 1-жёсток, если число компонент, образующихся при удалении вершин, всегда не превосходит числа удалённых вершин. Жёсткость графа — это максимальное t, для которого он t-жёсток. Число является конечным числом для всех конечных графов, за исключением полных графов, которые, по соглашению...
(Топологический)
индекс Хосойи , известный также как Z индекс, графа — это полное число паросочетаний на нём. Индекс Хосойи всегда больше либо равен одному, поскольку пустое множество рёбер считается как паросочетание. Эквивалентно, индекс Хосойи — это число непустых паросочетаний плюс один.
Связное доминирующее множество и остовное дерево с максимальной листвой являются двумя тесно связанными структурами, определёнными на неориентированном графе.
При визуализации графов, когда рёбра графа представляются ломаными (последовательностью отрезков, соединённых в точках излома), желательно минимизировать число изломов на ребро (что иногда называется сложностью кривой) или общее число изломов на рисунке. Минимизация изломов — это алгоритмическая задача поиска рисунка графа, минимизирующего указанные величины.
Подробнее: Минимизация изломов
В геометрии правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.
В теории графов графом единичных кругов называется граф пересечений семейства единичных кругов на евклидовой плоскости. То есть мы образуем вершину для каждого круга и соединяем две вершины ребром, если соответствующие круги пересекаются.
Подробнее: Граф единичных кругов
В теории графов полная раскраска — это противоположность гармонической раскраске в том смысле, что это раскраска вершин, в которой каждая пара цветов встречается по меньшей мере на одной паре смежных вершин. Эквивалентно, полная раскраска — это минимальная раскраска, в том смысле, что её нельзя преобразовать в правильную раскраску с меньшим числом цветов путём слияния двух цветов. Ахроматическое число ψ(G) графа G — это максимальное число цветов среди всех полных раскрасок графа G.
Алгебраическая связность графа G — это второе из минимальных собственных значений матрицы Кирхгофа графа G. Это значение больше нуля в том и только в том случае, когда граф G является связным. Это следствие того факта, что сколько раз значение 0 появляется в качестве собственного значения матрицы Кирхгофа, из стольких компонент связности состоит граф. Величина этого значения отражает насколько хорошо связен весь граф и используется для анализа устойчивости и синхронизации сетей.
Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а...
В теории графов двусвязный граф — это связный и неделимый граф, в том смысле, что удаление любой вершины не приведёт к потере связности. Теорема Уитни утверждает, в частности, что граф двусвязен тогда и только тогда, когда между любыми двумя его вершинами есть минимум два реберно непересекающихся пути. Таким образом, двусвязный граф не имеет шарниров.
Симплициальная (или комбинаторная) d-сфера — это симплициальный комплекс, гомеоморфный d-мерной сфере. Некоторые симплициальные сферы появляются как границы выпуклого многогранника, однако в более высоких размерностях большинство симплициальных сфер не может быть получено таким образом.
В теории графов спичечным графом называется граф, который можно нарисовать на плоскости таким образом, что все его рёбра представляют собой отрезки прямой длиной единица и рёбра не пересекаются. Таким образом, этот граф имеет вложение в плоскость одновременно в виде графа единичных расстояний и планарного графа.
Подробнее: Спичечный граф
Рациональная поверхность — это поверхность, бирационально эквивалентная проективной плоскости, или, другими словами, рациональное многообразие размерности два. Рациональные поверхности являются простейшими из примерно 10 классов поверхностей классицикации Энрикеса — Кодаиры комплексных поверхностей, и это были первые исследованные поверхности.
Срединный граф — граф, представляющий рёбра смежности внутри граней заданного планарного графа.
k-Смежностный многогранник — это выпуклый многогранник, в котором любое k-элементное подмножество его вершин является множеством вершин некоторой грани этого многогранника.
Растяжение правильного многомерного многогранника образует однородный политоп, но операция может быть применена к любому выпуклому политопу, как продемонстрировано для многогранников в статье «Нотация Конвея для многогранников». В случае трёхмерных многогранников растянутый многогранник имеет все грани исходного многогранника, все грани двойственного многогранника и дополнительные квадратные грани на месте исходных рёбер.
Многогранник, многоугольник или мозаика является изотоксальным или рёберно транзитивным, если его симметрии действуют транзитивно на его рёбрах. Неформально это означает, что имеется только один вид рёбер у объекта — если даны два ребра, существует параллельный перенос, вращение и/или зеркальное отражение, переводящее одно ребро в другое, не меняя область, занимаемую объектом.
Подробнее: Изотоксальная фигура
В математике константой
Чигера (также числом Чигера или изопериметрическим числом) графа называется числовая характеристика графа, отражающая, есть ли у графа «узкое место» или нет. Константа Чигера как способ измерения наличия «узкого места» представляет интерес во многих областях, например, для создания сильно связанных компьютерных сетей, для тасования карт и в топологии малых размерностей (в частности, при изучении гиперболических 3-мерных многообразий). Названа в честь математика Джефа Чигера...
Вложение Сегре используется в проективной геометрии для того, чтобы рассматривать прямое произведение двух проективных пространств как проективное многообразие. Названо в честь итальянского математика Беньямино Сегре.
Теорема Понтрягина — Куратовского, или теорема Куратовского, — теорема в теории графов, дающая необходимое и достаточное условие планарности графа.
Единичный отрезок — величина, принимаемая за единицу при геометрических построениях. При изображении декартовой системы координат, единичный отрезок обычно отмечается на каждой из осей.
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
Наибольший многоугольник единичного диаметра — многоугольник с n сторонами (для заданного числа n), диаметр которого равен единице (то есть любые две его точки находятся друг от друга на расстоянии, не превосходящем единицы), и имеющий наибольшую площадь среди других n-угольников диаметра единица. Решением (не уникальным) для n = 4 является квадрат, решением для нечётных n является правильный многоугольник, при этом для остальных чётных n правильный многоугольник наибольшим не будет.
Алгори́тм Ка́ргера (англ. Karger's algorithm) — в информатике и теории графов является вероятностным алгоритмом, позволяющим найти минимальный разрез связного графа. Алгоритм изобретен Девидом Каргером и опубликован в 1993 году.
Лексикографический поиск в ширину (англ. lexicographic breadth-first search, LBFS or Lex-BFS) — алгоритм упорядочивания вершин графа. Алгоритм отличается от алгоритма поиска в ширину и дает более упорядоченную последовательность вершин графа.
Гипотеза Тёплица , также известная как гипотеза о вписанном квадрате — нерешённая проблема геометрии. Формулировка гипотезы...
В теории графов рёберно-транзитивным графом называется граф G такой, что для любых двух рёбер e1 и e2 графа G, существует автоморфизм графа G, который отображает e1 в e2.
Подробнее: Рёберно-транзитивный граф
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
Для ориентированного графа G термины converse (обратный), transpose (транспонированный) или reverse (противоположный) используются для обозначения другого ориентированного графа с тем же набором вершинам и с теми же дугами, но ориентация дуг этого графа противоположна ориентации дуг графа G. То есть, если граф G содержит дугу (u,v), то обратный/транспонированный/противоположный граф графу G содержит дугу (v,u) и наоборот.
Подробнее: Транспонированный граф
В теории графов ежевикой для неориентированного графа G называется семейство связных подграфов графа G, которые касаются друг друга: для любой пары подграфов, не имеющих общих вершин, должно существовать ребро, конечные вершины которого лежат в этих двух подграфах. Порядок ежевики — это наименьший размер множества вершин G, которое имеет непустое пересечение с каждым подграфом ежевики. Ежевики используются для описания древесной ширины графа G.
Подробнее: Ежевика (теория графов)
Гиперобъём — некоторая мера (обычно мера Лебега), сопоставляемая внутренности «гипертел» (тел в многомерном пространстве), обобщение трёхмерного объёма.