Связанные понятия
Оператор Собеля — дискретный дифференциальный оператор, вычисляющий приближённое значение градиента яркости изображения. Результатом применения оператора Собеля в каждой точке изображения является либо вектор градиента яркости в этой точке, либо его норма. Используется в области обработки изображений, в частности, часто применяется в алгоритмах выделения границ.
Гистогра́мма в математической статистике — это функция, приближающая плотность вероятности некоторого распределения, построенная на основе выборки из него.
Сдвиг среднего значения — это непараметрическая техника анализа пространства признаков для определения местоположения максимума плотности вероятности, так называемый алгоритм поиска моды. Область применения техники — кластерный анализ в компьютерном зрении и обработке изображений.
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Семплирование по Гиббсу — алгоритм для генерации выборки совместного распределения множества случайных величин. Он используется для оценки совместного распределения и для вычисления интегралов методом Монте-Карло. Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса и назван в честь физика Джозайи Гиббса.
Объемный рендеринг — техника, используемая для получения плоского изображения (проекции) трехмерного дискретного набора данных.
Оператор Ротуэлла , в дисциплине компьютерного зрения — оператор для обнаружения границ, представленный Чарлзом Ротуэллом (англ. C. A. Rothwell) на Симпозиуме IEEE по компьютерному зрению в 1995 году.
Поиском
наилучшей проекции (англ. Projection Pursuit) называется статистический метод, состоящий в нахождении такой проекции многомерных данных, для которой достигает максимума некоторая функция качества проекции.
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Двоичная, бинарная или дихотомическая классификация — это задача классификации элементов заданного множества в две группы (предсказание, какой из групп принадлежит каждый элемент множества) на основе правила классификации. Контекст, в котором требуется решение, имеет ли объект некоторое качественное свойство, некоторые специфичные характеристики или некоторую типичную двоичную классификацию, включает...
Алгоритм Гёрцеля (англ. Goertzel algorithm) — это специальная реализация дискретного преобразования Фурье (ДПФ) в форме рекурсивного фильтра. Данный алгоритм был предложен Джеральдом Гёрцелем в 1958 году. В отличие от быстрого преобразования Фурье, вычисляющего все частотные компоненты ДПФ, алгоритм Гёрцеля позволяет эффективно вычислить значение одного частотного компонента.
Матрица мер конвергенции — матрица содержащая в качестве элементов меры сходства объектов. Матрица отражает попарное сходство объектов. Сходство является показателем, измеренном в порядковой шкале и, следовательно, возможно лишь определение отношений вида: «больше», «меньше» или «равно».
Оператор Кэнни (детектор границ Кэнни, алгоритм Кэнни) в дисциплине компьютерного зрения — оператор обнаружения границ изображения. Был разработан в 1986 году Джоном Кэнни (англ. John F. Canny) и использует многоступенчатый алгоритм для обнаружения широкого спектра границ в изображениях.
Строковое ядро — это ядерная функция, определённая на строках, т.е. конечных последовательностях символов, которые не обязательно имеют одну и ту же длину. Строковые ядра можно интуитивно понимать как функции, измеряющие похожесть пар строк — чем больше похожи две строки a и b, тем больше значение строкового ядра K(a, b).
Алгоритм «прямого-обратного» хода — алгоритм для вычисления апостериорных вероятностей последовательности состояний при наличии последовательности наблюдений. Иначе говоря, алгоритм, вычисляющий вероятность специфической последовательности наблюдений. Алгоритм применяется в трёх алгоритмах скрытых Марковских моделей.
Выделение границ (выделение краёв) — термин в теории обработки изображения и компьютерного зрения, частично из области поиска объектов и выделения объектов, основывается на алгоритмах, которые выделяют точки цифрового изображения, в которых резко изменяется яркость или есть другие виды неоднородностей.
Линейное зондирование — это схема в программировании для разрешения коллизий в хеш-таблицах, структурах данных для управления наборами пар ключ – значение и поиска значений, ассоциированных с данным ключом. Схему придумали в 1954 Джин Амдал, Элейн Макгроу и Артур Сэмюэл, а проанализировна она была в 1963 Дональдом Кнутом.
Многочасти́чный фильтр (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.
Гистогра́мма (от др.-греч. ἱστός— столб + γράμμα — черта, буква, написание) — способ графического представления табличных данных.
В прикладной статистике метод наименьших полных квадратов (МНПК, TLS — англ. Total Least Squares) — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.
Поиск клонов в исходном коде - анализ исходного кода с помощью различных алгоритмов, с целью обнаружения клонированного кода, который может иметь вредоносный характер.
Нейронные сети Кохонена — класс нейронных сетей, основным элементом которых является слой Кохонена. Слой Кохонена состоит из адаптивных линейных сумматоров («линейных формальных нейронов»). Как правило, выходные сигналы слоя Кохонена обрабатываются по правилу «Победитель получает всё»: наибольший сигнал превращается в единичный, остальные обращаются в ноль.
Блочно-ориентированные модели — это представление нелинейных систем в виде различных комбинаций инерционных звеньев и нелинейных безынерционных математических элементов. Такое представление моделей позволяет связать в явном виде входные и выходные переменные объектов с различной структурой и степенью нелинейности. К таким системам относятся системы типа Гаммерштейна, Винера, Винера-Гаммерштейна, фильтра Заде, обобщенной модели Винера и Sm-системы.
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.
Подробнее: Спектральная кластеризация
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Расширяющийся нейронный газ — это алгоритм, позволяющий осуществлять адаптивную кластеризацию входных данных, то есть не только разделить пространство на кластеры, но и определить необходимое их количество исходя из особенностей самих данных. Это новый класс вычислительных механизмов. Количество и расположение искусственных нейронов в пространстве признаков не задается заранее, а вычисляется в процессе обучения моделей в соответствии с особенностями входных данных, самостоятельно подстраиваясь под...
Распознавание по голосу — одна из форм биометрической аутентификации, позволяющая идентифицировать личность человека по совокупности уникальных характеристик голоса. Относится к динамическим методам биометрии. Однако, поскольку голос человека может меняться в зависимости от возраста, эмоционального состояния, здоровья, гормонального фона и целого ряда других факторов, не является абсолютно точным. По мере развития звукозаписывающей и воспроизводящей техники, технология распознавания применяется с...
В обучении машин и распознавании образов признак — это индивидуальное измеримое свойство или характеристика наблюдаемого явления. Выбор информативных, отличительных и независимых признаков является критическим шагом для эффективных алгоритмов в распознавании образов, классификации и регрессии. Признаки обычно являются числовыми, но структурные признаки, такие как строки и графы, используются в синтаксическом распознавании образов.
Подробнее: Признак (обучение машин)
Алгоритм Баума — Велша используется в информатике и статистике для нахождения неизвестных параметров скрытой марковской модели (HMM). Он использует алгоритм прямого-обратного хода и является частным случаем обобщённого EM-алгоритма.
Признаки Хаара — признаки цифрового изображения, используемые в распознавании образов. Своим названием они обязаны интуитивным сходством с вейвлетами Хаара. Признаки Хаара использовались в первом детекторе лиц, работающем в реальном времени.
Поиск изображений по содержанию (англ. Content-based image retrieval (CBIR)) — раздел компьютерного зрения, решающий задачу поиска изображений, которые имеют требуемое содержание, в большом наборе цифровых изображений.
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Результатом сегментации изображения является множество сегментов, которые вместе покрывают всё изображение, или множество контуров, выделенных из изображения (см. Выделение границ). Все пиксели в сегменте похожи по некоторой характеристике или вычисленному свойству, например, по цвету, яркости или текстуре. Соседние сегменты значительно отличаются по этой характеристике.
Подробнее: Сегментация (обработка изображений)
Частотное распределение — метод статистического описания данных (измеренных значений, характерных значений). Математически распределение частот является функцией, которая в первую очередь определяет для каждого показателя идеальное значение, так как эта величина обычно уже измерена. Такое распределение можно представить в виде таблицы или графика, моделируя функциональные уравнения. В описательной статистике частота распределения имеет ряд математических функций, которые используются для выравнивания...
В математическом анализе и информатике кривая Мортона, Z-последовательность,Z-порядок, кривая Лебега, порядок Мортона или код Мортона — это функция, которая отображает многомерные данные в одномерные, сохраняя локальность точек данных. Функция была введена в 1966 Гаем Макдональдом Мортоном. Z-значение точки в многомерном пространстве легко вычисляется чередованием двоичных цифр его координатных значений. Когда данные запоминаются в этом порядке, могут быть использованы любые одномерные структуры...
Подробнее: Кривая Мортона
Задача характеризации
элементов микросхем заключается в получении зависимостей функциональных параметров библиотечного элемента или блока от длительности фронтов сигналов на входе и от величины нагрузочных емкостей для заданных наборов этих величин. В коммерческих системах характеризации (SiliconSmart , Virtuoso Liberate Characterization Solution , Virtuoso Variety Statistical Characterization Solution , Virtuoso Liberate MX Memory Characterization Solution , Kronos Characterizer Plus ) такие зависимости...
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
В теории информации
теорема Шеннона об источнике шифрования (или теорема бесшумного шифрования) устанавливает предел максимального сжатия данных и числовое значение энтропии Шеннона.
Тексел ь (сокращение от англ. Texture element) — минимальная единица текстуры трёхмерного объекта. Пиксель текстуры.
Диаграмма Насси — Шнейдермана (англ. Nassi — Shneiderman diagram) — это графический способ представления структурированных алгоритмов и программ, разработанный в 1972 году американскими аспирантами Беном Шнейдерманом и Айзеком Насси.
Алгоритм Брезенхе́ма (англ. Bresenham's line algorithm) — это алгоритм, определяющий, какие точки двумерного растра нужно закрасить, чтобы получить близкое приближение прямой линии между двумя заданными точками. Это один из старейших алгоритмов в машинной графике — он был разработан Джеком Элтоном Брезенхэмом (англ. Jack Elton Bresenham) в компании IBM в 1962 году. Алгоритм широко используется, в частности, для рисования линий на экране компьютера. Существует обобщение алгоритма Брезенхэма для построения...
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
Эффективность алгоритма — это свойство алгоритма, которое связано с вычислительными ресурсами, используемыми алгоритмом. Алгоритм должен быть проанализирован с целью определения необходимых алгоритму ресурсов. Эффективность алгоритма можно рассматривать как аналог производственной производительности повторяющихся или непрерывных процессов.
Выделение признаков — это процесс снижения размерности, в котором исходный набор сырых переменных сокращается до более управляемых групп (признаков) для дальнейшей обработки, оставаясь при этом достаточным набором для точного и полного описания исходного набора данных.
Тематическое моделирование — способ построения модели коллекции текстовых документов, которая определяет, к каким темам относится каждый из документов.