Связанные понятия
Алгоритм Гёрцеля (англ. Goertzel algorithm) — это специальная реализация дискретного преобразования Фурье (ДПФ) в форме рекурсивного фильтра. Данный алгоритм был предложен Джеральдом Гёрцелем в 1958 году. В отличие от быстрого преобразования Фурье, вычисляющего все частотные компоненты ДПФ, алгоритм Гёрцеля позволяет эффективно вычислить значение одного частотного компонента.
Нейронные сети Кохонена — класс нейронных сетей, основным элементом которых является слой Кохонена. Слой Кохонена состоит из адаптивных линейных сумматоров («линейных формальных нейронов»). Как правило, выходные сигналы слоя Кохонена обрабатываются по правилу «Победитель получает всё»: наибольший сигнал превращается в единичный, остальные обращаются в ноль.
Гистогра́мма в математической статистике — это функция, приближающая плотность вероятности некоторого распределения, построенная на основе выборки из него.
Семплирование по Гиббсу — алгоритм для генерации выборки совместного распределения множества случайных величин. Он используется для оценки совместного распределения и для вычисления интегралов методом Монте-Карло. Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса и назван в честь физика Джозайи Гиббса.
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
В обучении машин и распознавании образов признак — это индивидуальное измеримое свойство или характеристика наблюдаемого явления. Выбор информативных, отличительных и независимых признаков является критическим шагом для эффективных алгоритмов в распознавании образов, классификации и регрессии. Признаки обычно являются числовыми, но структурные признаки, такие как строки и графы, используются в синтаксическом распознавании образов.
Подробнее: Признак (обучение машин)
Многочасти́чный фильтр (МЧФ, англ. particle filter — «фильтр частиц», «частичный фильтр», «корпускулярный фильтр») — последовательный метод Монте-Карло — рекурсивный алгоритм для численного решения проблем оценивания (фильтрации, сглаживания), особенно для нелинейных и не-гауссовских случаев. Со времени описания в 1993 году Н. Гордоном, Д. Салмондом и А. Смитом используется в различных областях — навигации, робототехнике, компьютерном зрении.
Алгоритм Витерби — алгоритм поиска наиболее подходящего списка состояний (называемого путём Витерби), который в контексте цепей Маркова получает наиболее вероятную последовательность произошедших событий.
Сдвиг среднего значения — это непараметрическая техника анализа пространства признаков для определения местоположения максимума плотности вероятности, так называемый алгоритм поиска моды. Область применения техники — кластерный анализ в компьютерном зрении и обработке изображений.
Перемежитель (Интерливер от англ. Interleaver) — блок, реализующий перемежение - один из способов борьбы с ошибками. Предназначен для борьбы с пакетированием ошибок путём их разнесения во времени. Использует перемешивание (перемежение) символов передаваемой последовательности на передаче и восстановление её исходной структуры на приёме.
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Децима́ция (от лат. decimatio, от decem — «десять») — уменьшение частоты дискретизации дискретного во времени сигнала путём прореживания его отсчётов.
Обучение дерева решений использует дерево решений (как предиктивную модель), чтобы перейти от наблюдений над объектами (представленными в ветвях) к заключениям о целевых значениях объектов (представленных в листьях). Это обучение является одним из подходов моделирования предсказаний, используемых в статистике, интеллектуальном анализе данных и обучении машин. Модели деревьев, в которых целевая переменная может принимать дискретный набор значений, называются деревьями классификации. В этих структурах...
Алгоритм Баума — Велша используется в информатике и статистике для нахождения неизвестных параметров скрытой марковской модели (HMM). Он использует алгоритм прямого-обратного хода и является частным случаем обобщённого EM-алгоритма.
Ассоциативная память (АП) или ассоциативное запоминающее устройство (АЗУ) является особым видом машинной памяти, используемой в приложениях очень быстрого поиска. Известна также как память, адресуемая по содержимому, ассоциативное запоминающее устройство, контентно-адресуемая память или ассоциативный массив, хотя последний термин чаще используется в программировании для обозначения структуры данных (Hannum и др., 2004).
Качество видео (анг. Video quality) — это характеристика обработанного видео, как правило, по сравнению с оригиналом. С момента записи первой видео последовательности было разработано большое число систем обработки видео. Различные системы могут оказывать различное влияние на видео последовательность, таким образом измерение качества видео — это очень важная задача.
Нейроуправление (англ. Neurocontrol) — частный случай интеллектуального управления, использующий искусственные нейронные сети для решения задач управления динамическими объектами. Нейроуправление находится на стыке таких дисциплин, как искусственный интеллект, нейрофизиология, теория автоматического управления, робототехника. Нейронные сети обладают рядом уникальных свойств, которые делают их мощным инструментом для создания систем управления: способностью к обучению на примерах и обобщению данных...
Выделение границ (выделение краёв) — термин в теории обработки изображения и компьютерного зрения, частично из области поиска объектов и выделения объектов, основывается на алгоритмах, которые выделяют точки цифрового изображения, в которых резко изменяется яркость или есть другие виды неоднородностей.
Вейвлет-преобразование (англ. Wavelet transform) — интегральное преобразование, которое представляет собой свертку вейвлет-функции с сигналом. Вейвлет-преобразование переводит сигнал из временного представления в частотно-временное.
Цифровой фильтр — в электронике любой фильтр, обрабатывающий цифровой сигнал с целью выделения и/или подавления определённых частот этого сигнала. В отличие от цифрового, аналоговый фильтр имеет дело с аналоговым сигналом, его свойства недискретны, соответственно передаточная функция зависит от внутренних свойств составляющих его элементов.
Блочно-ориентированные модели — это представление нелинейных систем в виде различных комбинаций инерционных звеньев и нелинейных безынерционных математических элементов. Такое представление моделей позволяет связать в явном виде входные и выходные переменные объектов с различной структурой и степенью нелинейности. К таким системам относятся системы типа Гаммерштейна, Винера, Винера-Гаммерштейна, фильтра Заде, обобщенной модели Винера и Sm-системы.
Существуют два класса систем связи: цифровые и аналоговые. Цифровой сигнал — это сигнал, имеющий конечное число дискретных уровней. Аналоговые сигналы являются непрерывными. Типичным примером такого сигнала является речевой сигнал, передаваемый по обычному телефону. Информацию, передаваемую аналоговыми сигналами, также необходимо защищать, в том числе и криптографическими методами.
Подробнее: Шифрование в аналоговой телефонии
Спектр сигнала — в радиотехнике это результат разложения сигнала на более простые в базисе ортогональных функций. В качестве разложения обычно используются преобразование Фурье, разложение по функциям Уолша, вейвлет-преобразование и др.
Фи́льтр Ка́лмана — эффективный рекурсивный фильтр, оценивающий вектор состояния динамической системы, используя ряд неполных и зашумленных измерений. Назван в честь Рудольфа Калмана.
Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.
Подробнее: Спектральная кластеризация
Квантова́ние (англ. quantization) — в обработке сигналов — разбиение диапазона отсчётных значений сигнала на конечное число уровней и округление этих значений до одного из двух ближайших к ним уровней. При этом значение сигнала может округляться либо до ближайшего уровня, либо до меньшего или большего из ближайших уровней в зависимости от способа кодирования. Такое квантование называется скалярным. Существует также векторное квантование — разбиение пространства возможных значений векторной величины...
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
В основе кодирования звука с использованием ПК лежит процесс преобразования колебаний воздуха в колебания электрического тока и последующая дискретизация аналогового электрического сигнала. Кодирование и воспроизведение звуковой информации осуществляется с помощью специальных программ (редактор звукозаписи). Качество воспроизведения закодированного звука зависит от частоты дискретизации и её разрешения (глубины кодирования звука — количество уровней).
Подробнее: Кодирование звуковой информации
Сетевое кодирование — раздел теории информации, изучающий вопрос оптимизации передачи данных по сети с использованием техник изменения пакетов данных на промежуточных узлах.
Оператор Собеля — дискретный дифференциальный оператор, вычисляющий приближённое значение градиента яркости изображения. Результатом применения оператора Собеля в каждой точке изображения является либо вектор градиента яркости в этой точке, либо его норма. Используется в области обработки изображений, в частности, часто применяется в алгоритмах выделения границ.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Цифрово́й компара́тор или компара́тор ко́дов логическое устройство с двумя словарными входами, на которые подаются два разных двоичных слова равной в битах длины и обычно с тремя двоичными выходами, на которые выдаётся признак сравнения входных слов, — первое слово больше второго, меньше или слова равны. При этом выходы «больше», «меньше» имеют смысл, если входные слова кодируют числа в том или ином машинном представлении.
Свёрточная нейронная сеть (англ. convolutional neural network, CNN) — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная на эффективное распознавание образов, входит в состав технологий глубокого обучения (англ. deep learning). Использует некоторые особенности зрительной коры, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого...
Спектра́льная пло́тность мо́щности (СПМ) в физике и обработке сигналов — функция, описывающая распределение мощности сигнала в зависимости от частоты, то есть мощность, приходящаяся на единичный интервал частоты. Имеет размерность мощности, делённой на частоту, то есть энергии. Например, в Международной системе единиц (СИ): Вт/Гц = Вт/с−1 = Вт·с.
Двоичная, бинарная или дихотомическая классификация — это задача классификации элементов заданного множества в две группы (предсказание, какой из групп принадлежит каждый элемент множества) на основе правила классификации. Контекст, в котором требуется решение, имеет ли объект некоторое качественное свойство, некоторые специфичные характеристики или некоторую типичную двоичную классификацию, включает...
Скорость передачи данных — объём данных, передаваемых за единицу времени. Максимальная скорость передачи данных без появления ошибок (пропускная способность) вместе с задержкой определяют производительность системы или линии связи. Теоретическая верхняя граница скорости передачи определяется теоремой Шеннона — Хартли.
Долгая краткосрочная память (англ. Long short-term memory; LSTM) — разновидность архитектуры рекуррентных нейронных сетей, предложенная в 1997 году Сеппом Хохрайтером и Юргеном Шмидхубером. Как и большинство рекуррентных нейронных сетей, LSTM-сеть является универсальной в том смысле, что при достаточном числе элементов сети она может выполнить любое вычисление, на которое способен обычный компьютер, для чего необходима соответствующая матрица весов, которая может рассматриваться как программа. В...
Строковое ядро — это ядерная функция, определённая на строках, т.е. конечных последовательностях символов, которые не обязательно имеют одну и ту же длину. Строковые ядра можно интуитивно понимать как функции, измеряющие похожесть пар строк — чем больше похожи две строки a и b, тем больше значение строкового ядра K(a, b).
Ана́лиз свя́зей или анализ ссылок (от англ. «link analysis») — это метод анализа данных, используемый в рамках сетевого анализа для оценки отношений (связей) между узлами (объектами/акторами). Отношения могут быть определены для различных типов узлов: людей, организаций, операций и т. д.
Фильтр с бесконечной импульсной характеристикой (Рекурсивный фильтр, БИХ-фильтр) или IIR-фильтр (IIR сокр. от infinite impulse response — бесконечная импульсная характеристика) — линейный электронный фильтр, использующий один или более своих выходов в качестве входа, то есть образующий обратную связь. Основным свойством таких фильтров является то, что их импульсная переходная характеристика имеет бесконечную длину во временной области, а передаточная функция имеет дробно-рациональный вид. Такие фильтры...
Самоорганизу́ющаяся ка́рта Ко́хонена (англ. Self-organizing map — SOM) — нейронная сеть с обучением без учителя, выполняющая задачу визуализации и кластеризации. Идея сети предложена финским учёным Т. Кохоненом. Является методом проецирования многомерного пространства в пространство с более низкой размерностью (чаще всего, двумерное), применяется также для решения задач моделирования, прогнозирования, выявление наборов независимых признаков, поиска закономерностей в больших массивах данных, разработке...
Адаптивный фильтр — система с линейным фильтром, имеющим передаточную функцию, контролируемую переменными параметрами и средствами для установки этих параметров согласно оптимизационному алгоритму. Ввиду сложности оптимизационных алгоритмов почти все адаптивные фильтры являются цифровыми фильтрами. Адаптивные фильтры требуются для некоторых приложений, поскольку некоторые параметры желательной операции обработки (например, местоположение отражающих поверхностей в реверберирующем пространстве) заранее...
Дистрибути́вная сема́нтика — это область лингвистики, которая занимается вычислением степени семантической близости между лингвистическими единицами на основании их распределения (дистрибуции) в больших массивах лингвистических данных (текстовых корпусах).
Задача характеризации
элементов микросхем заключается в получении зависимостей функциональных параметров библиотечного элемента или блока от длительности фронтов сигналов на входе и от величины нагрузочных емкостей для заданных наборов этих величин. В коммерческих системах характеризации (SiliconSmart , Virtuoso Liberate Characterization Solution , Virtuoso Variety Statistical Characterization Solution , Virtuoso Liberate MX Memory Characterization Solution , Kronos Characterizer Plus ) такие зависимости...