Математические трюки для быстрого счёта

Ингве Фогт, 2018

Забудьте о калькуляторе, эта книга научит вас скоростным вычислениям в уме или с карандашом. Чтобы считать быстрее, достаточно думать немного иначе, уверен ее автор Ингве Фогт – норвежский журналист научного журнала Apollon и фанат математики. Вы узнаете о простых и нескучных методах быстрого счета, для которых понадобится лишь знание базовых арифметических правил. Метод Трахтенберга, китайский способ счета с помощью черточек и множество других математических техник помогут вам без труда складывать и вычитать, умножать и делить, извлекать квадратный корень и возводить в квадрат большие числа. А еще вы найдете необычные факты и увлекательные истории о числах и людях, которые без ума от них, и познакомитесь с краткой тысячелетней историей систем счисления, начиная со времен Древней Греции до сегодняшней цифровой эпохи.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Математические трюки для быстрого счёта предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

2

Проще некуда

Семь правил, которые вам понадобятся

Дорогой читатель, позвольте вас успокоить. Чтобы учиться быстрому счету по этой книге, никаких особых познаний в математике вам не понадобится. Единственное, что от вас потребуется, — это помнить несколько простейших базовых правил, которым учат еще в начальной школе. И больше ничего, обещаю! Честное слово, даже если вы не станете читать эту главу, тех правил достаточно, чтобы вы справился с остальными главами моей книги.

Итак, в основе книги лежат семь легких математических правил. Сравнить их можно с содержимым столярного ящика. Строя прекраснейшие дома, плотник пользуется лишь пилой и топором. Вот и вам понадобится всего несколько математических инструментов, чтобы стать мастером быстрого счета. Некоторые из этих инструментов такие простые, что вы, возможно, сочтете лишним их упоминать. Но я все равно расскажу о них — во-первых, потому что они важные, а во-вторых, потому что они простые и лишний раз порадуют вас.

Правило 1

Первое правило на удивление простое. Порядок чисел при умножении роли не играет:

a × b = b × a

Если буквы вам не по душе, могу продемонстрировать то же самое на простейшем цифровом примере.

3 × 7 даст тот же результат, что 7 × 3. Итак, то, в каком порядке перемножать числа, совершенно не важно.

Правило 2

Второе правило тоже манна небесная для тех, кто пребывает в заблуждении и считает математику сложной.

Порядок чисел при сложении роли не играет.

a + b = b + a

И вот вам пример: 2 + 3 дадут в результате то же число, что и 3 + 2.

Правило 3

Квадрат определенного числа выглядит следующим образом: a × a = a2.

Обратите внимание на крошечную цифру 2 над последней «а» — читая эту книгу, вы успеете близко с ней познакомиться. Математики называют такие цифры степенями.

Вот еще пример: 3 × 3 можно обозначить как 32.

Разумеется, отрицательные числа тоже можно возводить в квадрат:

(‒a) × (‒a) = (‒a)2 = a2

Например: (‒3) × (‒3) соответствует (‒3)2.

А вот это невероятно красиво:

(‒3)2 дает тот же результат, что и 32.

Правило 4

На квадратные корни тоже приятно посмотреть:

Это означает, что если извлечь квадратный корень из возведенного в квадрат числа, то это же число и получится.

На языке цифр это выглядит вот так:

Правило 5

Когда надо умножать отрицательные числа, многие впадают в ступор. Если вас это тоже касается, то быстрому счету вам придется учиться долго.

Одно из важнейших правил звучит так: минус на минус дает плюс.

(‒x) × (‒y) = x × y

Примеры:

(‒2) × (‒3) = 2 × 3 = 6

(‒4) × (‒5) = 4 × 5 = 20

А вот если минус умножить на плюс, то получится, наоборот, минус:

(‒x) × y = ‒(x × y)

Примеры:

(‒2) × 3 = ‒(2 × 3) = ‒6

4 × (‒5) = ‒(4 × 5) = ‒20

Запомним это — минус на минус и минус на плюс, и тогда все минусы математики превратятся для вас в плюсы!

Правило 6

Если хотите понять доказательства приведенных в этой книге методов, придется научиться разлагать числовые выражения на множители и раскрывать скобки:

a(b + c) = ab + ac

(a + c)(b + d) = ab + ad + cb + cd

Вот и все — больше про разложение на множители знать нам ничего не понадобится.

Правило 7

Некоторые методы быстрого счета в этой книге основаны на трех видах квадратичных тождеств, которые включены в стандартную школьную программу. Все они — особые случаи правила 6:

(a + c)(b + d) = ab + ad + cb + cd

Квадратичное тождество первого типа:

(a + b)2 = a2 + 2ab + b2

Квадратичное тождество второго типа:

(a ‒ b)2 = a2 ‒ 2ab + b2

Квадратичное тождество третьего типа:

(a + b)(a ‒ b) = a2 ‒ b2

С этими семью правилами в готовальне у вас есть все шансы стать чемпионами быстрого счета. Ну что ж, пора отправляться завоевывать мир! Удачи и успехов!

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Математические трюки для быстрого счёта предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я