Квантовая физика не может не притягивать своей загадочностью. Предлагаем Вам окунуться в этот удивительный предмет науки. В настоящем исследовании, опираясь на общее аналитическое решение уравнения Шрёдингера, нам предстоит изучить целый ряд явлений и процессов, происходящих на уровне мельчайших взаимодействий. Обобщив положения о волновой функции, мы заглянем за ширму эксперимента с двумя щелями, проанализируем мир атомов и молекул, а также рассмотрим другие вопросы. Пора отправляться в путь!
Приведённый ознакомительный фрагмент книги Путешествие в квантовую механику предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других
3. К вопросу о разрешимости дифференциальных уравнений в частных производных
Опираясь на методику, которая будет разобрана в данном параграфе, можно численно решить любое дифференциальное уравнение и выявить характерные черты эволюции искомой функции во времени.
3.1 Интерполяция с помощью рядов Фурье
Допустим, что задан набор линейных функций Fk, расположенных на отрезках (kΔx, (k+1) Δx) вдоль оси x ∈ [0,Rx], тогда:
здесь Δx — размер интервалов, куда заключены значения выражений Fk; k — номер вычислительной операции, k∈N.
Тригонометрический ряд, который можно получить для функции F (x,y,z), задаваемой на отрезках (k Δx, (k+1) Δx) для x ∈ [0,Rx], (j Δy, (j+1) Δy) для y∈ [0,Ry] и (χ Δz, (χ+1) Δz) для z∈ [0,Rz], примет следующий вид:
где Θ — индекс, соответствующий той или иной оси координат xΘ.
Построим кусочно-линейную функцию F (x), тогда:
Рисунок 3.1 Интерполяция величины F (x).
3.2 Решение дифференциальных уравнений с частными производными
Пусть Q``∈C является решением произвольно заданного дифференциального уравнения в частных производных. Введём обозначения для функций a*, b*. Значения рассматриваемых выражений будут соответствовать вещественной a*=Re (Q``) и мнимой b*=Im (Q``) части тождества Q``=a*+ib*. Для того чтобы численно решить вырожденное дифференциальное уравнение, необходимо с помощью метода Эйлера определить закон изменения функции Q`` во времени. Следует отметить, что рассматриваемый подход не является единственным в своём роде. Однако в рамках данной книги остановимся на нём как на простом и наиболее наглядном. Любое параболическое дифференциальное уравнение с частными производными возможно преобразовать к общему виду, тогда:
Разложим в ряд Фурье решение Q``, следовательно:
Определим частные производные порядка sd по координате xΛ, входящие в состав выражения D, тогда:
здесь nΛ и RΛ — коэффициенты при координате xΛ.
Вместе с тем
Осуществим интерполяцию выражения D. Если рассматривается одномерный случай, то каждой точке, расположенной на оси D, необходимо поставить в соответствие отрезок (kΔxΘ, (k+1) ΔxΘ), находящийся на оси xΘ. Следовательно, в трёхмерном пространстве справедливым будет соотношение:
где x∈ [-Rx, Rx]; y∈ [-Ry, Ry]; z∈ [-Rz, Rz].
Определим частную производную решения Q`` по времени, тогда:
Последнюю формулу возможно преобразовать к виду:
Выражения Q0 и Q`` будут тождественно равны друг другу в рамках одной итерации. Подставим величины Q1, D и Q`` в уравнение (3**), а затем произведём обратное преобразование Фурье. В результате получим соотношение:
С каждой новой итерацией по времени в формулы (3`), (3.1), (3.2), (3.3) и (3``) вместо выражения Q`` следует подставлять известное решение Q1, тогда:
Расчёт необходимо выполнять до тех пор, пока не будет достигнуто условие V`Δt=T*, здесь T* — промежуток времени, определяющий эволюцию искомой функции Q``; Δt — величина шага по времени; V` — общее количество итераций.
3.3 Частное решение дифференциального уравнения
В предыдущем параграфе мы рассмотрели методику, направленную на решение дифференциальных уравнений, выраженных в общем виде. Разбирая частный случай данной задачи, необходимо потребовать, чтобы исследуемое дифференциальное уравнение было линейным. Если величины nx, ny, nz окажутся положительными, то справедливым будет следующее условие: Q``∈R. Кроме того, в одномерном случае переменные Q`` (0) и Q`` (Rx) должны принимать нулевые значения Q`` (0) =Q`` (Rx) =0. Таким образом, величину F (x,y,z) возможно представить в виде тождества:
здесь x∈ [0,Rx]; y∈ [0,Ry]; z∈ [0,Rz].
Преобразуем выражение (3.1), тогда:
Разложим в ряд Фурье функцию D, следовательно:
Уравнение (3.5) можно представить в виде соотношения:
Коэффициенты Фурье, которые соответствуют следующей по времени итерации, легко можно выразить через коэффициенты Фурье, полученные для предыдущей итерации.
Уравнение Шрёдингера, составленное для постоянной потенциальной энергии, является линейным. Отсюда следует, что решение рассматриваемого дифференциального уравнения возможно представить в виде тождества (3.7), поскольку в данном случае величины nx, ny, nz примут положительные значения. Более того, если подставить в качестве решения функцию
то справедливым окажется соотношение:
Получим частное решение уравнения Шрёдингера, следовательно:
Общее решение ψp является суммой частных по nx, ny, nz.
Под обозначением ψp* понимается комплексно сопряжённая волновая функция. Плотностью вероятности появления частицы в точке с координатами (x,y,z) называют соотношение ψpψp*. Исходя из тождества ограниченности вероятности ∫-∞∞∫-∞∞∫-∞∞ψpψp*dxdydz=1, возможно вычислить множитель Cp, следовательно:
где nx∈N, ny∈N, nz∈N — величины, с помощью которых можно определить дискретные значения полной энергии квантовой системы, существующей в стационарном состоянии.
Для того чтобы построить модель устойчивого химического соединения, необходимо в качестве потенциальной энергии Up (x,y,z) подставить в тождество (4!) постоянный коэффициент U0p (потенциал). Исходя из закона Кулона, составленного для энергий, возможно, например, определить условия существования неподвижных в пространстве молекулярных или кристаллических структур. Атомы химического соединения будут сохранять свою стабильность до тех пор, пока сумма энергий ΣoΣj, j≠oUoj, полученная для всех кулоновских взаимодействий, не изменит своего значения. Последнее окажется минимальным в том случае, когда в квантовой системе будет достигнуто электростатическое равновесие, тогда:
здесь roj — расстояние между частицами под номерами o и j; qj, qo — заряды частиц; K — коэффициент пропорциональности.
Волновая функция ψ — это комплекснозначная величина, используемая в квантовой механике для описания чистого состояния системы, когда квантово-механические процессы происходят без декогеренции. Волновая функция физического смысла не имеет, но физический смысл приписывается плотности вероятности. Величину ψ возможно представить в виде суммы волновых функций ψp, каждая из которых будет характеризовать то или иное состояние p рассматриваемой квантовой системы.
В следующем параграфе мы получим общее аналитическое решение уравнения Шрёдингера. Опираясь на методику из 4-го раздела, можно описать большинство явлений нерелятивистской квантовой механики, в том числе дать математическое обоснование коллапсу волновой функции.
Приведённый ознакомительный фрагмент книги Путешествие в квантовую механику предоставлен нашим книжным партнёром — компанией ЛитРес.
Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других