Понятия со словосочетанием «невозможное событие»

Связанные понятия

Некорректное априорное распределение — ситуация, когда в теореме Байеса сумма (интеграл) априорных вероятностей не даёт в результате 1 или вообще не ограничена.
Формула полной вероятности позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез.
Теорема о топологической цензуре в общей теории относительности утверждает, что в отсутствие экзотической материи нетривиальная топология пространства-времени не может быть обнаружена внешним наблюдателем, так как любые такие области коллапсируют настолько быстро, что свет не успевает их пересечь. Более точная формулировка утверждает, что в глобально гиперболическом и асимптотически плоском пространстве-времени, где выполняются световые энергетические условия, любая причинная кривая от светоподобной...

Подробнее: Топологическая цензура
В теории вероятностей случайная величина имеет дискретное равномерное распределение, если она принимает конечное число значений с равными вероятностями.

Подробнее: Дискретное равномерное распределение
Алгебра множеств в теории множеств — это непустая система подмножеств, замкнутая относительно операций дополнения (разности) и объединения (суммы).
Адинато́н (от др.-греч. ἀδύνᾰτον «невозможное») — фигура речи в форме гиперболы, когда нечто невозможное или очень трудное в осуществлении сопоставляется, с помощью отвлечённого примера и сильного преувеличения, с какой-либо нереальной ситуацией, с чем-то, чего по природе вещей не может быть. Риторический приём доведения сравнения до невозможного, нередко с юмористическим эффектом.
Поток событий — последовательность событий, которые наступают в случайные моменты времени.
Закон нуля или единицы — утверждение в теории вероятностей о том, что всякое остаточное событие, то есть событие, наступление которого определяется лишь сколь угодно удалёнными элементами последовательности независимых случайных событий или случайных величин, имеет вероятность нуль или единица. Закон открыт Андреем Николаевичем Колмогоровым, поэтому иногда называется в его честь.
По́лной гру́ппой(системой) собы́тий в теории вероятностей называется система случайных событий такая, что в результате произведенного случайного эксперимента непременно произойдет одно и только одно из них.

Подробнее: Полная группа событий
Ковариа́ция (корреляционный момент, ковариационный момент) — в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин.
Мнимый парадокс — ложный парадокс, возникающий из-за неверного хода рассуждений.
Апостерио́рная вероя́тность — условная вероятность случайного события при условии того, что известны апостериорные данные, т.е. полученные после опыта.
Ве́кторная величина́ — физическая величина, являющаяся вектором (тензором ранга 1). Противопоставляется с одной стороны скалярным (тензорам ранга 0), с другой — тензорным величинам (строго говоря — тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.
Парадокс Ябло (англ. Yablo's paradox) — это логический парадокс, похожий на парадокс лжеца. Был опубликован Стефаном Ябло в 1993 году. Важность этого парадокса в том, что, хотя он похож на парадокс лжеца и разные его варианты, этот парадокс, по крайней мере на первый взгляд, избегает самореференции. Правда, многие считают, что это только на первый взгляд, и самореференция «спрятана» внутри парадокса.
Мультиномиа́льное (полиномиа́льное) распределе́ние в теории вероятностей — это обобщение биномиального распределения на случай n>1 независимых испытаний случайного эксперимента с k>2 возможными исходами.
В теории вероятностей говорят, что событие почти достоверно или что оно произойдет почти наверняка, если это произойдет с вероятностью 1. Понятие является аналогом понятия «почти всюду» в теории меры. В то время, как во многих основных вероятностных экспериментах нет никакой разницы между «почти достоверно» и «достоверно», (то есть, событие произойдет совершенно точно), это различие важно в более сложных случаях, относящихся к случаям рассмотрения какой-либо бесконечности. Например, термин часто...

Подробнее: Почти достоверное событие
Формула Вика — формула теории вероятностей, выражающая математическое ожидание многочлена от координат гауссовского вектора через элементы матрицы ковариаций. Одним из её применений является связь между средним значением полинома от следов степеней случайной матрицы большого размера и родами поверхностей, получаемыми склейкой заданных многоугольников при различных отождествлениях сторон.
Принцип максимума энтропии утверждает, что наиболее характерными распределениями вероятностей состояний неопределенной среды являются такие распределения, которые максимизируют выбранную меру неопределенности при заданной информации о «поведении» среды. Впервые подобный подход использовал Д.Гиббс для нахождения экстремальных функций распределений физических ансамблей частиц. Впоследствии Э.Джейнсом был предложен формализм восстановления неизвестных законов распределения случайных величин при наличии...
Дискретная случайная величина — это случайная величина, множество значений которой не более чем счётно (то есть конечно или счётно). Очевидно, значения дискретной случайной величины не содержат какой-либо непрерывный интервал на числовой прямой.
Абсу́рд (от лат. absurdus, «нестройный, нелепый»; от лат. ad absurdum, «исходящий от глухого») — нечто алогичное, нелепое, противоречащее здравому смыслу. Приведение чего-либо к абсурду (доведения до абсурда) означает доказать бессмысленность какого-либо положения тем, что логически развивая это положение, в итоге приходят к нелепости, которая явно вскрывает внутренние противоречия самого положения. Приведение к абсурду — весьма распространённый приём в спорах, к которому часто любили прибегать софисты...
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
Мирова́я ли́ния в теории относительности — кривая в пространстве-времени, описывающая движение тела (рассматриваемого как материальная точка), геометрическое место всех событий существования тела. Иногда мировой линией называют вообще любую непрерывную линию в пространстве-времени.
Количество степеней свободы — это количество значений в итоговом вычислении статистики, способных варьироваться. Иными словами, количество степеней свободы показывает размерность вектора из случайных величин, количество «свободных» величин, необходимых для того, чтобы полностью определить вектор.
Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.
Стандартные ошибки в форме Уайта или состоятельные при гетероскедастичности стандартные ошибки (HC s.e. — Heteroskedasticity consistent standard errors) — применяемая в эконометрике оценка ковариационной матрицы (в частности и стандартных ошибок) МНК-оценок параметров линейной модели регрессии, которая состоятельна при гетероскедастичности случайных ошибок модели, альтернативная стандартной (классической) оценке, которая в данном случае является несостоятельной.
Ме́трика Гёделя — точное решение уравнений Эйнштейна, полученное Куртом Гёделем в 1949 году. Это решение порождается тензором энергии-импульса, состоящим из двух частей; первая представляет собой плотность материи однородно распределённых вращающихся частиц пыли, а вторая — ненулевую космологическую постоянную.
Сходи́мость по ме́ре (по вероя́тности) в функциональном анализе, теории вероятностей и смежных дисциплинах — это вид сходимости измеримых функций (случайных величин), заданных на пространстве с мерой (вероятностном пространстве).
Случайное блуждание — математическая модель процесса случайных изменений — шагов в дискретные моменты времени. При этом предполагается, что изменение на каждом шаге не зависит от предыдущих и от времени. В силу простоты анализа эта модель часто используется в разных сферах в математике, экономике, физике, но, как правило, такая модель является существенным упрощением реального процесса.
Пробле́ма космологи́ческой постоя́нной — закрепившееся в современной астрофизике выражение, означающее грубую ошибку, которую дают предсказания значения космологической постоянной посредством применения двух фундаментальных физических теорий: общей теории относительности (ОТО) и квантовой физики. Предсказанная величина получается больше экспериментально измеренной на 120 порядков — «наихудшее предсказание, когда-либо сделанное научной теорией», по словам Ли Смолина.
На космологической шкале времени события могут быть предсказаны с той или иной долей вероятности. Например, согласно некоторым космологическим гипотезам о судьбе Вселенной, существует вероятность того, что произойдет Большой разрыв всей материи за конечное время. Если эта гипотеза окажется верна то события описанные в этой статье на дальнем конце временной шкалы могут никогда не наступить, поскольку конец Вселенной наступит приблизительно через 22 млрд лет.

Подробнее: Временная шкала далёкого будущего
Теорема отделимости — теорема о топологических свойствах метрического пространства.
Ландша́фт тео́рии струн (антропный ландшафт, проблема ландшафта) — существование в теории струн огромного числа (10100—10500 ) ложных вакуумов. Такое количество ложных вакуумов объясняется свободой выбора пространств Калаби — Яу, отвечающих за компактификацию дополнительных измерений в теории струн.
Аксиома́тика Колмого́рова — общепринятая аксиоматика для математического описания теории вероятностей. Первоначальный вариант предложен Андреем Николаевичем Колмогоровым в 1929 году, окончательная версия — в 1933 году. Аксиоматика Колмогорова позволила придать теории вероятностей стиль, принятый в современной математике.
Считающая ме́ра (также счётная мера) — формальный эквивалент количества элементов множества.
Моме́нт случа́йной величины́ — числовая характеристика распределения данной случайной величины.
Трансценде́нтное число́ (от лат. transcendere — переходить, превосходить) — это вещественное или комплексное число, не являющееся алгебраическим — иными словами, число, которое не может быть корнем многочлена с целочисленными коэффициентами (не равного тождественно нулю). Можно также заменить в определении многочлены с целочисленными коэффициентами на многочлены с рациональными коэффициентами, поскольку корни у них одни и те же.
Оши́бка — непреднамеренное, забывчивое отклонение от правильных действий, поступков, мыслей, разница между ожидаемой или измеренной и реальной величиной.
Случайное компактное множество — это, по существу, случайная величина со значениями в компактных множествах. Случайные компактные множества используются при изучении аттракторов случайных динамических систем.
Бесконе́чно дели́мое распределе́ние в теории вероятностей — распределение случайной величины такой, что она может быть представлена в виде произвольного количества независимых, одинаково распределённых слагаемых.
Коэффицие́нт сдви́га — это параметр вероятностного распределения, имеющий специальный вид. Физически конкретное значение данного параметра может быть связано с выбором точки отсчёта шкалы измерения.
Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.
Случайный элемент — обобщение понятия случайной величины. Термин был введён, по-видимому, М.Фреше (1948), отмечавшим, что «развитие теории вероятностей и расширение области её приложений привели к необходимости перейти от схем, где (случайные) исходы опыта могут быть описаны числом или конечным набором чисел, к схемам, где исходы опыта представляют собой, например, векторы, функции, процессы, поля, ряды, преобразования, а также множества или наборы множеств».
Усло́вное распределе́ние в теории вероятностей — это распределение случайной величины при условии, что другая случайная величина принимает определённое значение.
Вероятностная рекурсия — это цикл, ещё одно выполнение которого инициируется с некоторой вероятностью. Длина рекурсии неопределённа, но теоретически может быть бесконечным. На практике же рекурсия рано или поздно заканчивается, поскольку рекурсия по сути своей всегда ограничена (за исключением случаев, когда вероятность равна =100%, тогда это неограниченная рекурсия. Если не ввести ещё одно условие, останавливающее цикл, то это может вызвать переполнение буферов оперативной памяти и срабатывание...
Боре́левская си́гма-а́лгебра — минимальная сигма-алгебра, содержащая все открытые подмножества топологического пространства (также она содержит и все замкнутые). Эти подмножества также называются борелевскими.
Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х — произвольное действительное число. При соблюдении известных условий (см. ниже) полностью определяет случайную величину.
Коэффицие́нт эксце́сса (коэффициент островершинности) в теории вероятностей — мера остроты пика распределения случайной величины.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я