Понятия со словом «координаты»
Систе́ма координа́т — комплекс определений, реализующий метод координат, то есть способ определять положение и перемещение точки или тела с помощью чисел или других символов. Совокупность чисел, определяющих положение конкретной точки, называется координатами этой точки.
Начало координат (начало отсчёта) в евклидовом пространстве — особая точка, обычно обозначаемая буквой О, которая используется как точка отсчёта для всех остальных точек. В евклидовой геометрии начало координат может быть выбрано произвольно в любой удобной точке.
Географи́ческие координа́ты — обобщённое понятие о геодезических и астрономических координатах, когда уклонение отвесной линии не учитывают. Иными словами, при определении географических координат Земля принимается за шар. Географические координаты определяют положение точки на земной поверхности или, более широко, в географической оболочке. Географические координаты строятся по принципу сферических. Аналогичные координаты применяются на других планетах, а также на небесной сфере.
Прямоугольная система координат — прямолинейная система координат с взаимно перпендикулярными осями на плоскости или в пространстве. Наиболее простая и поэтому часто используемая система координат. Очень легко и прямо обобщается для пространств любой размерности, что также способствует её широкому применению.
Система небесных координат используется в астрономии для описания положения светил на небе или точек на воображаемой небесной сфере. Координаты светил или точек задаются двумя угловыми величинами (или дугами), однозначно определяющими положение объектов на небесной сфере. Таким образом, система небесных координат является сферической системой координат, в которой третья координата — расстояние — часто неизвестна и не играет роли.
Эклиптическая система координат, или эклиптикальные координаты:49 — это система небесных координат, в которой основной плоскостью является плоскость эклиптики, а полюсом — полюс эклиптики. Она применяется при наблюдениях за движением небесных тел Солнечной системы, плоскости орбит многих из которых, как известно, близки к плоскости эклиптики, а также при наблюдениях за видимым перемещением Солнца по небу за год:30.
Связанная система координат — это система координат, используемая для анализа движения воздушных судов в механике полета. Она состоит из продольной OX, поперечной OZ и вертикальной осей OY, которые проходят через центр масс движущегося объекта.
Метод координат — способ определять положение точки или тела с помощью чисел или других символов (например, положение шахматных фигур на доске определяется с помощью чисел и букв). Числа (символы), определяющие положение точки (тела) на прямой, плоскости, в пространстве, на поверхности и так далее, называются её координатами. В зависимости от целей и характера исследования выбирают различные системы координат.
Координаты Борна в специальной теории относительности — система координат, применяемая для описания вращающейся окружности или (в более общем смысле) диска.
В релятивистской физике координатами Риндлера называется важная и полезная координатная система, представляющая часть плоского пространства-времени, также называемого пространством Минковского. Координаты Риндлера были введены Вольфгангом Риндлером для описания пространства-времени равномерно ускоренного наблюдателя.
Подробнее: Координаты Риндлера
В квантовой физике наряду с оператором импульса имеет место оператор координаты. Так как координата является вещественной величиной, то оператор координаты эрмитов.
Подробнее: Оператор координаты
Криволине́йная систе́ма координа́т, или криволине́йные координа́ты, — система координат в евклидовом (аффинном) пространстве, или в области, содержащейся в нём. Криволинейные координаты не противопоставляются прямолинейным, последние являются частным случаем первых. Применяются обычно на плоскости (n=2) и в пространстве (n=3); число координат равно размерности пространства n.
Конические координаты — трёхмерная ортогональная система координат, состоящая из концентрических сфер (радиус r) и двумя семействами перпендикулярных конусов, направленных вдоль осей z и x.
Координа́ты Леме́тра — координаты в пространстве-времени Шварцшильда, впервые полученные Жоржем Леметром в 1933 году при помощи преобразования координат. В этих координатах была впервые устранена координатная сингулярность на гравитационном радиусе.
Галактическая система координат — это система небесных координат, имеющая начало отсчёта в Солнце и направление отсчёта от центра галактики Млечный Путь. Плоскость галактической системы координат совпадает с плоскостью галактического диска. Подобно географическим, галактические координаты имеют широту и долготу.
Однородные координаты ―
система координат, используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.
Тороидальная система координат — ортогональная система координат в пространстве, координатными поверхностями которой являются торы, сферы и полуплоскости. Данная система координат может быть получена посредством вращения двумерной биполярной системы координат вокруг оси, равноудалённой от фокусов биполярной системы.
Горизонтальная система координат:40, или горизонтная система координат:30 — это система небесных координат, в которой основной плоскостью является плоскость математического горизонта, а полюсами — зенит и надир. Она применяется при наблюдениях звёзд и движения небесных тел Солнечной системы на местности невооружённым глазом, в бинокль или телескоп с азимутальной установкой:85. Горизонтальные координаты не только планет и Солнца, но и звёзд непрерывно изменяются в течение суток ввиду суточного вращения...
Параболические координаты — ортогональная
система координат на плоскости, в которой координатные линии являются конфокальными параболами. Трёхмерный вариант этой системы координат получается при вращении парабол вокруг их оси симметрии.
International Terrestrial Reference System (ITRS, Международная земная система координат) — стандартная земная система координат, принятая МАС в 1991 году. Началом отсчета является центр масс Земли (включая океан и атмосферу). Система вращается вместе с Землей и не является инерциальной. Ориентация осей определяется из наблюдений МСВЗ. Ось z является средней осью вращения Земли и направлена в опорный полюс (IRP — IERS Reference Pole). Ось x лежит в плоскости опорного меридиана (IRM — IERS Reference...
Обобщённые координаты — параметры, описывающие конфигурацию динамической системы относительно некоторой эталонной конфигурации в аналитической механике, а конкретно исследовании динамики твёрдых тел в системе многих тел. Эти параметры должны однозначно определять конфигурацию системы относительно эталонной конфигурации. Обобщённые скорости — производные по времени обобщённых координат системы.
Нормальные координаты — локальная система координат в окрестности точки риманова многообразия (или, более общо, многообразиая с аффинной связностью) полученная из координат на касательном пространстве в данной точке примененим экспоненциального отображения.
Селенографи́ческие координа́ты — числа, которыми обозначают положение точек на поверхности Луны. Начало лунных координат определяется по небольшому кратеру Мёстинг А, находящемуся вблизи центра видимого полушария. Координаты этого кратера приняты такими: 3°12′43″ ю. ш. 5°12′39″ з. д.3,212000° ю. ш. 5,211000° з. д. / -3.212000; -5.211000.
Счисление координат (или счисление места) — метод определения места (текущих координат) корабля, (судна, летательного аппарата, транспортного средства, подвижного объекта) по известным исходным координатам и параметрам движения.
Связанные понятия
Строфоида (от греч. στροφή — поворот) — алгебраическая кривая 3-го порядка. Строится следующим образом (см. Рис. 1)...
Окружность Аполло́ния — геометрическое место точек плоскости, отношение расстояний от которых до двух заданных точек — величина постоянная, не равная единице.
Инверсия кривой — результат применения операции инверсии к заданной кривой C. По отношению к фиксированной окружности с центром O и радиусом k инверсия точки Q — это точка P, лежащая на луче OQ, и OP•OQ = k2. Инверсия кривой C — это множество всех точек P, являющихся инверсиями точек Q, принадлежащих кривой C. Точка O в этом построении называется центром инверсии, окружность называется окружностью инверсии, а k — радиусом инверсии.
Дифференциальная геометрия кривых — раздел дифференциальной геометрии, который занимается исследованием гладких пространственных и плоских кривых в евклидовом пространстве аналитическими методами.
Эпицикло́ида (от др.-греч. ὲπί — на, над, при и κύκλος — круг, окружность) — плоская кривая, образуемая фиксированной точкой окружности, катящейся по внешней стороне другой окружности без скольжения.
Каса́тельная пряма́я — прямая, проходящая через точку кривой и совпадающая с ней в этой точке с точностью до первого порядка.
Касательный вектор — элемент касательного пространства, например элемент касательной прямой к кривой, касательной плоскости к поверхности так далее.
Углова́я ско́рость — величина, характеризующая скорость вращения материальной точки вокруг центра вращения. Для вращения в двухмерном пространстве угловая скорость выражается числом, в трёхмерном пространстве представляется псевдовектором (аксиальным вектором), а в общем случае — кососимметрическим тензором.
Кинема́тика точки — раздел кинематики, изучающий математическое описание движения материальных точек. Основной задачей кинематики является описание движения при помощи математического аппарата без выяснения причин, вызывающих это движение.
Пло́скость — одно из основных понятий геометрии. При систематическом изложении геометрии понятие плоскости обычно принимается за одно из исходных понятий, которое лишь косвенным образом определяется аксиомами геометрии.
Кривизна́ — собирательное название ряда характеристик (скалярных, векторных, тензорных), описывающих отклонение того или иного геометрического «объекта» (кривой, поверхности, риманова пространства и т. д.) от соответствующих «плоских» объектов (прямая, плоскость, евклидово пространство и т. д.).
Э́ллипс (др.-греч. ἔλλειψις «опущение; нехватка, недостаток (эксцентриситета до 1)») — замкнутая кривая на плоскости, которая может быть получена как пересечение плоскости и кругового цилиндра или как ортогональная проекция окружности на плоскость.
Фундамента́льная пло́скость — плоскость, выбором которой (как, впрочем, и началом координат в заданной точке этой плоскости) определяются различные системы сферических, географических, геодезических и астрономических координат (включая небесные координаты).
Инве́рсия (от лат. inversio «обращение») относительно окружности — преобразование евклидовой плоскости, переводящее обобщённые окружности (окружности либо прямые) в обобщённые окружности, при котором одна из окружностей поточечно переводится в себя.
Формула Бине (механика) — дифференциальное уравнение в частных производных, позволяющее определить центральную силу, если известно уравнение траектории материальной точки, движущейся под её действием, или по заданной центральной силе определить траекторию.
Мирова́я ли́ния в теории относительности — кривая в пространстве-времени, описывающая движение тела (рассматриваемого как материальная точка), геометрическое место всех событий существования тела. Иногда мировой линией называют вообще любую непрерывную линию в пространстве-времени.
Волновая поверхность — геометрическое место точек, испытывающих возмущение обобщенной координаты в одинаковой фазе.
Расстояние от точки до прямой на плоскости — это кратчайшее расстояние от точки до прямой в евклидовой геометрии. Расстояние равно длине отрезка, который соединяет точку с прямой и перпендикулярен прямой. Формула вычисления расстояния может быть получена и выражена несколькими способами.
В геометрии циссоида — это кривая, созданная из двух заданных кривых C1, C2 относительно точки O (полюса). Пусть L — прямая, проходящая через O и пересекающая C1 в точке P1, а C2 — в точке P2. Пусть P — точка на L такая, что OP = P1P2 (на самом деле имеются две таких точки, но P выбирается так, что P находится в том же направлении от O, что и P2 от P1). Множество таких точек P называется циссоидой кривых C1, C2 относительно O.
Эволю́та плоской кривой — геометрическое место точек, являющихся центрами кривизны кривой.