Связанные понятия
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Непреры́вное равноме́рное распределе́ние — в теории вероятностей — распределение случайной вещественной величины, принимающей значения, принадлежащие интервалу , характеризующееся тем, что плотность вероятности на этом интервале постоянна.
Ковариацио́нная ма́трица (или ма́трица ковариа́ций) в теории вероятностей — это матрица, составленная из попарных ковариаций элементов одного или двух случайных векторов.
Ковариа́ция (корреляционный момент, ковариационный момент) — в теории вероятностей и математической статистике мера линейной зависимости двух случайных величин.
Апостерио́рная вероя́тность — условная вероятность случайного события при условии того, что известны апостериорные данные, т.е. полученные после опыта.
Несмещённая оце́нка в математической статистике — это точечная оценка, математическое ожидание которой равно оцениваемому параметру.
Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора; вероятность того, что случайная величина X примет значение, меньшее или равное х, где х — произвольное действительное число. При соблюдении известных условий (см. ниже) полностью определяет случайную величину.
Характеристи́ческая фу́нкция случа́йной величины ́ — один из способов задания распределения. Характеристические функции могут быть удобнее в тех случаях, когда, например, плотность или функция распределения имеют очень сложный вид. Также характеристические функции являются удобным инструментом для изучения вопросов слабой сходимости (сходимости по распределению). В теорию характеристических функций внесли большой вклад Ю.В. Линник, И.В. Островский, С.Р. Рао, Б. Рамачандран.
Нера́венство Ма́ркова в теории вероятностей даёт оценку вероятности, что случайная величина превзойдёт по модулю фиксированную положительную константу, в терминах её математического ожидания. Хотя получаемая оценка обычно груба, она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.
Весовая функция — математическая конструкция, используемая при проведении суммирования, интегрирования или усреднения с целью придания некоторым элементам большего веса в результирующем значении по сравнению с другими элементами. Задача часто возникает в статистике и математическом анализе, тесно связана с теорией меры. Весовые функции могут быть использованы как для дискретных, так и для непрерывных величин.
Кванти́ль в математической статистике — значение, которое заданная случайная величина не превышает с фиксированной вероятностью. Если вероятность задана в процентах, то квантиль называется процентилем или перцентилем (см. ниже).
В теории вероятностей два случайных события называются независимыми, если наступление одного из них не изменяет вероятность наступления другого. Аналогично, две случайные величины называют независимыми, если известное значение одной из них не дает информации о другой.
Подробнее: Независимость (теория вероятностей)
Функция потерь — функция, которая в теории статистических решений характеризует потери при неправильном принятии решений на основе наблюдаемых данных. Если решается задача оценки параметра сигнала на фоне помех, то функция потерь является мерой расхождения между истинным значением оцениваемого параметра и оценкой параметра.
То́чечная оце́нка в математической статистике — это число, оцениваемое на основе наблюдений, предположительно близкое к оцениваемому параметру.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Винеровский процесс в теории случайных процессов — это математическая модель броуновского движения или случайного блуждания с непрерывным временем.
Параметрическое представление — используемая в математическом анализе разновидность представления переменных, когда их зависимость выражается через дополнительную величину — параметр.
Линейный классификатор — способ решения задач классификации, когда решение принимается на основании линейного оператора над входными данными. Класс задач, которые можно решать с помощью линейных классификаторов, обладают, соответственно, свойством линейной сепарабельности.
Центра́льные преде́льные теоре́мы (Ц. П. Т.) — класс теорем в теории вероятностей, утверждающих, что сумма достаточно большого количества слабо зависимых случайных величин, имеющих примерно одинаковые масштабы (ни одно из слагаемых не доминирует, не вносит в сумму определяющего вклада), имеет распределение, близкое к нормальному.
Подробнее: Центральная предельная теорема
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
Мультииндекс (или мульти-индекс) — обобщение понятия целочисленного индекса до векторного индекса, которое нашло применение в различных областях математики, связанных с функциями многих переменных. Использование мультииндекса помогает упростить (записать более кратко) математические формулы.
Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.
Метод неопределённых коэффициентов ― метод, используемый в математике для нахождения искомой функции в виде точной или приближённой линейной комбинации конечного или бесконечного набора базовых функций.
Вероя́тностное простра́нство — понятие, введённое А. Н. Колмогоровым в 30-х годах XX века для формализации понятия вероятности, которое дало начало бурному развитию теории вероятностей как строгой математической дисциплины.
Состоя́тельная оце́нка в математической статистике — это точечная оценка, сходящаяся по вероятности к оцениваемому параметру.
В теории вероятностей случайная величина имеет дискретное равномерное распределение, если она принимает конечное число значений с равными вероятностями.
Подробнее: Дискретное равномерное распределение
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Определённый интеграл — аддитивный монотонный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).
Метод итерации — численный метод решения математических задач, приближённый метод решения системы линейных алгебраических уравнений. Суть такого метода заключается в нахождении по приближённому значению величины следующего приближения (являющегося более точным).
Сглаживающие операторы — это гладкие функции со специальными свойствами, используемые в теории распределений для построения последовательности гладких функций, приближающей негладкую (обобщённую) функцию с помощью свёртки. Интуитивно, имея функцию с особенностями и осуществляя её свёртку со сглаживающей функцией, получаем «сглаженную функцию», в которой особенности исходной функции сглажены, хотя функция остаётся близкой к исходной функции. Операторы известны также как сглаживающие операторы Фридрихса...
Подробнее: Сглаживающий оператор
В прикладной статистике метод наименьших полных квадратов (МНПК, TLS — англ. Total Least Squares) — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.
Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение...
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Кусочно-линейная функция — функция, определённая на множестве вещественных чисел, линейная на каждом из интервалов, составляющих область определения.
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия.
О дискретном эквиваленте преобразования Лапласа см. Z-преобразование.В математике дискретный оператор Лапласа — аналог непрерывного оператора Лапласа, определяемого как отношения на графе или дискретной сетке. В случае конечномерного графа (имеющего конечное число вершин и рёбер) дискретный оператор Лапласа имеет более общее название: матрица Лапласа.
Подробнее: Дискретный оператор Лапласа
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.
Подробнее: Спектральная кластеризация
Квадратичное программирование (англ. quadratic programming, QP) — это процесс решения задачи оптимизации специального типа, а именно — задачи оптимизации (минимизации или максимизации) квадратичной функции нескольких переменных при линейных ограничениях на эти переменные. Квадратичное программирование является частным случаем нелинейного программирования.
Боре́левская си́гма-а́лгебра — минимальная сигма-алгебра, содержащая все открытые подмножества топологического пространства (также она содержит и все замкнутые). Эти подмножества также называются борелевскими.
Тест отноше́ния правдоподо́бия (англ. likelihood ratio test, LR) — статистический тест, используемый для проверки ограничений на параметры статистических моделей, оценённых на основе выборочных данных. Является одним из трёх базовых тестов проверки ограничений наряду с тестом множителей Лагранжа и тестом Вальда.
В математике и теоретической физике функциональная производная является обобщением производной по направлению. Разница заключается в том, что для последней дифференцирование производится в направлении какого-нибудь вектора, а для первой речь идёт о функции. Оба эти понятия можно рассматривать как обобщение обычного дифференциального исчисления.
Подробнее: Функциональная производная