Связанные понятия
Иску́сственный нейро́н (математический нейрон Маккаллока — Питтса, формальный нейрон) — узел искусственной нейронной сети, являющийся упрощённой моделью естественного нейрона.
В искусственных нейронных сетях функция активации нейрона определяет выходной сигнал, который определяется входным сигналом или набором входных сигналов. Стандартная компьютерная микросхема может рассматриваться как цифровая сеть функций активации, которые могут принимать значения «ON» (1) или «OFF» (0) в зависимости от входа. Это похоже на поведение линейного перцептрона в нейронных сетях. Однако только нелинейные функции активации позволяют таким сетям решать нетривиальные задачи с использованием...
Подробнее: Функция активации
Базисный набор — набор функций, который используется для построения молекулярных орбиталей, которые представляются как линейная комбинация функций этого набора с определёнными весами или коэффициентами. Обычно этими функциями являются атомные орбитали, центрированные на атомах, хотя иногда функции центрируют на связях, на половинах p-орбитали и т. п.
Теория линейных стационарных систем — раздел теории динамических систем, изучающий поведение и динамические свойства линейных стационарных систем (ЛСС). Используется для изучения процессов управления техническими системами, для цифровой обработки сигналов и в других областях науки и техники.
Базисная функция — функция, которая является элементом базиса в функциональном пространстве. Базисная функция может также называться базисным вектором, если базис определен в линейном пространстве.
Расширяющийся нейронный газ — это алгоритм, позволяющий осуществлять адаптивную кластеризацию входных данных, то есть не только разделить пространство на кластеры, но и определить необходимое их количество исходя из особенностей самих данных. Это новый класс вычислительных механизмов. Количество и расположение искусственных нейронов в пространстве признаков не задается заранее, а вычисляется в процессе обучения моделей в соответствии с особенностями входных данных, самостоятельно подстраиваясь под...
Линейный классификатор — способ решения задач классификации, когда решение принимается на основании линейного оператора над входными данными. Класс задач, которые можно решать с помощью линейных классификаторов, обладают, соответственно, свойством линейной сепарабельности.
В статистике, машинном обучении и теории информации снижение размерности — это преобразование данных, состоящее в уменьшении числа переменных путём получения главных переменных. Преобразование может быть разделено на отбор признаков и выделение признаков.
Подробнее: Снижение размерности
Нейронные сети Кохонена — класс нейронных сетей, основным элементом которых является слой Кохонена. Слой Кохонена состоит из адаптивных линейных сумматоров («линейных формальных нейронов»). Как правило, выходные сигналы слоя Кохонена обрабатываются по правилу «Победитель получает всё»: наибольший сигнал превращается в единичный, остальные обращаются в ноль.
Аналоговый функциона́льный блок , блок операционный — совокупность элементов АВМ структурного типа, которые реализуют какую-либо одну математическую операцию. Эти элементы объединяются в систему для решения задач в соответствии со структурной схемой модели, образуя модель задачи.
Самоорганизу́ющаяся ка́рта Ко́хонена (англ. Self-organizing map — SOM) — нейронная сеть с обучением без учителя, выполняющая задачу визуализации и кластеризации. Идея сети предложена финским учёным Т. Кохоненом. Является методом проецирования многомерного пространства в пространство с более низкой размерностью (чаще всего, двумерное), применяется также для решения задач моделирования, прогнозирования, выявление наборов независимых признаков, поиска закономерностей в больших массивах данных, разработке...
К вейвлет-функциям с компактным носителем относятся вейвлеты Добеши, койфлеты и симмлеты. Метод построения вейвлет-функций с компактным носителем принадлежит Ингрид Добеши. Койфлеты являются частным случаем вейвлетов Добеши с нулевыми моментами скейлинг-функции.
Подробнее: Вейвлет Койфлет
Нумерация значений (англ. Value Numbering) — один из видов анализа потока данных, применяемый оптимизирующим компилятором с целью обнаружения избыточных вычислений в коде (промежуточном представлении) программы. Результатами анализа могут воспользоваться оптимизации: распространение копий, удаление частичных избыточностей, удаление общих подвыражений, оптимизация условий (англ. If Optimization), inline-подстановка. Анализ разбивает множество всех рассматриваемых операций, вырабатывающих какой-либо...
Фильтр с бесконечной импульсной характеристикой (Рекурсивный фильтр, БИХ-фильтр) или IIR-фильтр (IIR сокр. от infinite impulse response — бесконечная импульсная характеристика) — линейный электронный фильтр, использующий один или более своих выходов в качестве входа, то есть образующий обратную связь. Основным свойством таких фильтров является то, что их импульсная переходная характеристика имеет бесконечную длину во временной области, а передаточная функция имеет дробно-рациональный вид. Такие фильтры...
Схема функциональной целостности (СФЦ) — это логически универсальное графическое средство структурного представления исследуемых свойств системных объектов. Описание аппарата схем функциональной целостности было впервые опубликовано Можаевым А. С. в 1982 году. По построению аппарат СФЦ реализует все возможности алгебры логики в функциональном базисе «И», «ИЛИ» и «НЕ». СФЦ позволяют корректно представлять как все традиционные виды структурных схем (блок-схемы, деревья отказов, деревья событий, графы...
Решётка (англ. Grid network, иногда также mesh, например 3D-mesh) — понятие из теории организации компьютерных сетей. Это топология, в которой узлы образуют регулярную многомерную решётку. При этом каждое ребро решётки параллельно её оси и соединяет два смежных узла вдоль этой оси. Не следует путать с понятием Грид, обозначающем вычислительную систему.
Диакоптика , или метод Крона (англ. diakoptics, греческий dia-через, усиливает слово, стоящее за ним и может интерпретировано как «система» + kopto-разрыв) — один из методов расчленения при исследовании сложных систем, которые могут быть представлены в виде блок-схемы или графа с использованием граф-топологического портрета системы как нового источника информацииТермин диакоптика использовал Крон в серии статей «Diakoptics — The Piecewise Solution of Large-Scale Systems», опубликованных между 7 июня...
Сетевое исчисление (англ., Network Calculus) — это совокупность математических результатов, которые позволяют исследовать граничные значения характеристик функционирования таких сложных технических систем, как сети связи, цифровые электрические цепи, конкурирующие программы. Сетевое исчисление даёт теоретическую основу для анализа гарантированной производительности телекоммуникационных пакетных сетей. Потоки трафика, проходящие через сеть, имеют различные ограничения, обусловленные такими свойствами...
Кратномасштабный анализ (КМА) является инструментом построения базисов вейвлетов. Он был разработан в 1988/89 гг. Малла и И. Мейром. Идея кратномасштабного анализа заключается в том, что разложение сигнала производится по ортогональному базису, образованному сдвигами и кратномасштабными копиями вейвлетной функции. Свертка сигнала с вейвлетами позволяет выделить характерные особенности сигнала в области локализации этих вейвлетов.
Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством...
Подробнее: Ядерный метод
Теория автоматического управления (ТАУ) — научная дисциплина, которая изучает процессы автоматического управления объектами разной физической природы. При этом при помощи математических средств выявляются свойства систем автоматического управления и разрабатываются рекомендации по их проектированию.
Замыкание (англ. closure) в программировании — функция первого класса, в теле которой присутствуют ссылки на переменные, объявленные вне тела этой функции в окружающем коде и не являющиеся её параметрами. Говоря другим языком, замыкание — функция, которая ссылается на свободные переменные в своей области видимости.
Функциональный объект (англ. function object), также функтор, функционал и функционоид — распространённая в программировании конструкция, позволяющая использовать объект как функцию. Часто используется как callback, делегат.
Синхронный унитарный сигнал (СУС) — синхронная последовательность единиц, в которой информационная величина представляется в виде Р-ряда (P - prima) или Z-ряда (Z - zero). Информационным параметром является длина (NР) Р-ряда и длина (Nz) Z-ряда.
Подробнее: Операторы логической свёртки сигнала
Обучение признакам или обучение представлениям — это набор техник, которые позволяют системе автоматически обнаружить представления, необходимые для выявления признаков или классификации исходных (сырых) данных. Это заменяет ручное конструирование признаков и позволяет машине как изучать признаки, так и использовать их для решения специфичных задач.
Амплитудно-фазовая частотная характеристика (АФЧХ) — удобное представление частотного отклика линейной стационарной динамической системы в виде графика в комплексных координатах. На таком графике частота выступает в качестве параметра кривой, фаза и амплитуда системы на заданной частоте представляется углом и длиной радиус-вектора каждой точки характеристики. По сути такой график объединяет на одной плоскости амплитудно-частотную и фазо-частотную характеристики.
Программирование потоков данных (англ. dataflow programming) — подход к программированию, при котором программа моделируется в виде ориентированного графа потока данных между операциями, подобного диаграмме потока данных. Развивается в программной инженерии с 1970-х годов.
Каррирование (от англ. currying, иногда — карринг) — преобразование функции от многих аргументов в набор функций, каждая из которых является функцией от одного аргумента. Возможность такого преобразования впервые отмечена в трудах Готтлоба Фреге, систематически изучена Моисеем Шейнфинкелем в 1920-е годы, а наименование получило по имени Хаскелла Карри — разработчика комбинаторной логики, в которой сведение к функциям одного аргумента носит основополагающий характер.
Одноэлектронное приближение — приближенный метод нахождения волновых функций и энергетических состояний квантовой системы со многими электронами.
Линейно-квадратичное гауссовское управление (англ. Linear quadratic Gaussian control, LQG control) — набор методов и математического аппарата теории управления для синтеза систем управления с отрицательной обратной связью для линейных систем с аддитивным гауссовским шумом. Синтез проводится путём минимизации заданного квадратичного функционала.
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.
Подробнее: Спектральная кластеризация
Кибернетический эксперимент состоит в том, что исходная система управления заменяется моделью, которая затем изучается. Принципиально моделирование состоит в создании системы управления, изоморфной или приближенно изоморфной данной, и в наблюдении за её функционированием .
Оператор Айверсона , в дисциплине компьютерного зрения — оператор обнаружения границ в изображениях. Был разработан Ли Айверсоном и Стивеном Цукером. Описание метода было впервые опубликовано в журнале IEEE Transactions on Pattern Analysis and Machine Intelligence в октябре 1995 года.
Функция Розенброка (англ. Rosenbrock function, Rosenbrock's valley, Rosenbrock's banana function) — невыпуклая функция, используемая для оценки производительности алгоритмов оптимизации, предложенная Ховардом Розенброком в 1960 году. Считается, что поиск глобального минимума для данной функции является нетривиальной задачей.
Графовая вероятностная модель — это вероятностная модель, в которой в виде графа представлены зависимости между случайными величинами. Вершины графа соответствуют случайным переменным, а рёбра — непосредственным вероятностным взаимосвязям между случайными величинами.
Сдвиг среднего значения — это непараметрическая техника анализа пространства признаков для определения местоположения максимума плотности вероятности, так называемый алгоритм поиска моды. Область применения техники — кластерный анализ в компьютерном зрении и обработке изображений.
Метод локализации — метод синтеза систем автоматического управления нелинейными и нестационарными объектами, включающий формирование управления как функции вектора скорости и обеспечивающий локализацию и подавление действия возмущений.
Упругая карта служит для нелинейного сокращения размерности данных. В многомерном пространстве данных располагается поверхность, которая приближает имеющиеся точки данных и при этом является, по возможности, не слишком изогнутой. Данные проецируются на эту поверхность и потом могут отображаться на ней, как на карте. Её можно представлять себе как упругую пластину, погруженную в пространство данных и прикрепленную к точкам данных пружинками. Служит обобщением метода главных компонент (в котором вместо...
Обобщённая фу́нкция или распределе́ние — математическое понятие, обобщающее классическое понятие функции.
Целевая функция — вещественная или целочисленная функция нескольких переменных, подлежащая оптимизации (минимизации или максимизации) в целях решения некоторой оптимизационной задачи. Термин используется в математическом программировании, исследовании операций, линейном программировании, теории статистических решений и других областях математики в первую очередь прикладного характера, хотя целью оптимизации может быть и решение собственно математической задачи. Помимо целевой функции в задаче оптимизации...
Дифференциа́льная эволю́ция (англ. differential evolution) — метод многомерной математической оптимизации, относящийся к классу стохастических алгоритмов оптимизации (то есть работает с использованием случайных чисел) и использующий некоторые идеи генетических алгоритмов, но, в отличие от них, не требует работы с переменными в бинарном коде.
Сглаживающие операторы — это гладкие функции со специальными свойствами, используемые в теории распределений для построения последовательности гладких функций, приближающей негладкую (обобщённую) функцию с помощью свёртки. Интуитивно, имея функцию с особенностями и осуществляя её свёртку со сглаживающей функцией, получаем «сглаженную функцию», в которой особенности исходной функции сглажены, хотя функция остаётся близкой к исходной функции. Операторы известны также как сглаживающие операторы Фридрихса...
Подробнее: Сглаживающий оператор
Метод конечных элементов (МКЭ) — это численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
Свёрточная нейронная сеть (англ. convolutional neural network, CNN) — специальная архитектура искусственных нейронных сетей, предложенная Яном Лекуном в 1988 году и нацеленная на эффективное распознавание образов, входит в состав технологий глубокого обучения (англ. deep learning). Использует некоторые особенности зрительной коры, в которой были открыты так называемые простые клетки, реагирующие на прямые линии под разными углами, и сложные клетки, реакция которых связана с активацией определённого...
Не путать с «симплекс-методом» — методом оптимизации произвольной функции. См. Метод Нелдера — МидаСимплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.
Подробнее: Симплекс-метод
Метод главных компонент (англ. principal component analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе, в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
Винеровская теория нелинейных систем — подход к решению задач анализа и синтеза нелинейных систем с постоянными параметрами, при котором в качестве математической модели нелинейной системы рассматривается функционал, который ставит в соответствие каждой функции (входному сигналу системы за рассматриваемое время) число (мгновенный выходной сигнал системы).