Связанные понятия
Итеративное сжатие — это алгоритмическая техника разработки фиксированно-параметрически разрешимых алгоритмов, в которой один элемент (такой как вершина графа) добавляется в задачу на каждом шаге и используется небольшое решение задачи перед добавлением элемента, чтобы найти небольшое решение задачи после добавления.
Задача о самом широком пути — это задача нахождения пути между двумя выбранными вершинами во взвешенном графе, максимизирующего вес минимального по весу ребра графа (если рассматривать вес ребра как ширину дороги, то задача стоит в выборе самой широкой дороги, связывающей две вершины). Задача о самом широком пути известна также как задача об узком месте или задача о пути с максимальной пропускной способностью. Можно приспособить алгоритмы кратчайшего пути для вычисления пропускной способности путём...
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.
Подробнее: Спектральная кластеризация
Задача о самом длинном пути — это задача поиска простого пути максимальной длины в заданном графе. Путь называется простым, если в нём нет повторных вершин. Длина пути может быть измерена либо числом рёбер, либо (в случае взвешенных графов) суммой весов его рёбер. В отличие от задачи кратчайшего пути, которая может быть решена за полиномиальное время на графах без циклов с отрицательным весом, задача нахождения самого длинного пути является NP-трудной и не может быть решена за полиномиальное время...
Полуопределённое программирование (en: Semidefinite programming, SDP) — это подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции (целевая функция — это заданная пользователем функция, значение которой пользователь хочет минимизировать или максимизировать) на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Вероятностный метод — неконструктивный метод доказательства существования математического объекта с заданными свойствами. В основном используется в комбинаторике, но также и в теории чисел, линейной алгебре и математическом анализе, а также в информатике (например, метод вероятностного округления) и теории информации.
Задача разбиения множества чисел — это задача определения, можно ли данное мультимножество S положительных целых чисел разбить на два подмножества S1 и S2, таких, что сумма чисел из S1 равна сумме чисел из S2. Хотя задача разбиения чисел является NP-полной, существует решение псевдополиномиального времени методом динамического программирования существуют эвристические алгоритмы решения для многих конкрентных задач либо оптимально, либо приближённо. По этой причине задачу называют "простейшей NP-трудной...
Модульное разложение — это разложение графа на подмножества вершин, называемых модулями. Модуль является обобщением компоненты связности графа. В отличие от компонент связности, однако, один модуль может быть собственным подмножеством другого. Модули, поэтому, ведут к рекурсивной (иерархической) декомпозиции графа, а не просто к разбиениям.
Двойственность , или принцип двойственности, — принцип, по которому задачи оптимизации можно рассматривать с двух точек зрения, как прямую задачу или двойственную задачу. Решение двойственной задачи даёт нижнюю границу прямой задачи (при минимизации). Однако, в общем случае, значения целевых функций оптимальных решений прямой и двойственной задач не обязательно совпадают. Разница этих значений, если она наблюдается, называется разрывом двойственности. Для задач выпуклого программирования разрыв двойственности...
Задача о наименьшей окружности или задача о минимальном покрывающем круге — задача о вычислении наименьшей окружности, содержащей все заданные точки из множества на евклидовой плоскости.
Задача о гамильтоновом пути и задача о гамильтоновом цикле — это задачи определения, существует ли гамильтонов путь (путь в неориентированном или ориентированном графе, который проходит все вершины графа ровно один раз) или гамильтонов цикл в заданном графе (ориентированном или неориентированном). Обе задачи NP-полны.
Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.
Кососимметрический граф — это ориентированный граф, который изоморфен своему собственному транспонированному графу, графу, образованному путём обращения всех дуг, с изоморфизмом, который является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
Алгоритм Гельфонда — Шенкса (англ. Baby-step giant-step; также называемый алгоритмом больших и малых шагов) — в теории групп детерминированный алгоритм дискретного логарифмирования в мульпликативной группе кольца вычетов по модулю простого числа. Был предложен советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году.
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
Лемма регулярности Семереди — лемма из общей теории графов, утверждающая, что вершины любого достаточно большого графа можно разбить на конечное число групп таких, что почти во всех двудольных графах, соединяющих вершины из двух разных групп, рёбра распределены между вершинами почти равномерно. При этом минимальное требуемое количество групп, на которые нужно разбить множество вершин графа, может быть сколь угодно большим, но количество групп в разбиении всегда ограничено сверху.
Вероятностное округление — это широко используемый подход для разработки и анализа таких аппроксимационных алгоритмов. Базовая идея — использование вероятностного метода для преобразования соответствующей оптимального решения задачи линейного программирования (ЛП) в приближённое к оптимальному решению исходной задачи.
В комбинаторной оптимизации под линейной задачей о назначениях на узкие места (linear bottleneck assignment problem, LBAP) понимается задача, похожая на задачу о назначениях.
Подробнее: Линейная задача о назначениях в узких местах
Задача о покрытии множества является классическим вопросом информатики и теории сложности. Данная задача обобщает NP-полную задачу о вершинном покрытии (и потому является NP-сложной). Несмотря на то, что задача о вершинном покрытии сходна с данной, подход, использованный в приближённом алгоритме, здесь не работает. Вместо этого мы рассмотрим жадный алгоритм. Даваемое им решение будет хуже оптимального в логарифмическое число раз. С ростом размера задачи качество решения ухудшается, но всё же довольно...
Косое разбиение графа — это разбиение его вершин на два подмножества, такое что порождённый подграф, образованный одним из его подмножеств вершин является несвязным, а другой порождённый подграф, образованный другим подмножеством является дополнением несвязного графа. Косые разбиения играют важную роль в теории совершенных графов.
Задача поиска изоморфного подграфа — это вычислительная задача, в которой входом являются два графа G и H и нужно определить, не содержит ли G подграф, изоморфный графу H.
Теорема Курселя — утверждение о том, что любое свойство графа, определяемое в логике графов второго порядка, может быть установлено за линейное время на графах с ограниченной древесной шириной. Результат впервые доказан Брюно Курселем в 1990 году и независимо переоткрыт Бори, Паркером и Товейем.
Задача о вершинном покрытии — NP-полная задача информатики в области теории графов. Часто используется в теории сложности для доказательства NP-полноты более сложных задач.
Разделяй и властвуй (англ. divide and conquer) в информатике — важная парадигма разработки алгоритмов, заключающаяся в рекурсивном разбиении решаемой задачи на две или более подзадачи того же типа, но меньшего размера, и комбинировании их решений для получения ответа к исходной задаче; разбиения выполняются до тех пор, пока все подзадачи не окажутся элементарными.
Не путать с «симплекс-методом» — методом оптимизации произвольной функции. См. Метод Нелдера — МидаСимплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.
Подробнее: Симплекс-метод
Гомоморфизм графов — это отображение между двумя графами, не нарушающее структуру. Более конкретно, это отображение между набором вершин двух графов, которое отображает смежные вершины в смежные.
Минимальное остовное дерево (или минимальное покрывающее дерево) в связанном взвешенном неориентированном графе — это остовное дерево этого графа, имеющее минимальный возможный вес, где под весом дерева понимается сумма весов входящих в него рёбер.
Максимальный разрез графа — это разрез, размер которого не меньше размера любого другого разреза. Задача определения максимального разреза для графа известна как задача о максимальном разрезе.
Дробная раскраска — это тема молодой области теории графов, известной как теория дробных графов. Дробная раскраска является обобщением обычной раскраски. В традиционной раскраске графа каждой вершине назначается некий цвет, и смежным вершинам — тем, что связаны рёбрами, — должны быть назначены разные цвета. В дробной раскраске каждой вершине назначается набор цветов.
Квадратичное программирование (англ. quadratic programming, QP) — это процесс решения задачи оптимизации специального типа, а именно — задачи оптимизации (минимизации или максимизации) квадратичной функции нескольких переменных при линейных ограничениях на эти переменные. Квадратичное программирование является частным случаем нелинейного программирования.
Задача коммивояжёра (англ. Travelling salesman problem, сокращённо TSP) — одна из самых известных задач комбинаторной оптимизации, заключающаяся в поиске самого выгодного маршрута, проходящего через указанные города хотя бы по одному разу с последующим возвратом в исходный город. В условиях задачи указываются критерий выгодности маршрута (кратчайший, самый дешёвый, совокупный критерий и тому подобное) и соответствующие матрицы расстояний, стоимости и тому подобного. Как правило, указывается, что...
Периферийный цикл в неориентированном графе является, интуитивно, циклом, который не отделяет любую часть графа от любой другой части. Периферийные циклы (или, как они сначала назывались, периферийные многоугольники, поскольку Тат называл циклы «многоугольниками»), первым изучал Тат и они играют важную роль в описании планарных графов и в образовании циклических пространств непланарных графов.
Поиск в ширину (англ. breadth-first search, BFS) — метод обхода графа и поиска пути в графе. Поиск в ширину является одним из неинформированных алгоритмов поиска.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Алгоритм Эдмондса или алгоритм Чу — Лью/Эдмондса — это алгоритм поиска остовного ориентированного корневого дерева минимального веса (иногда называемого оптимальным ветвлением).
В вычислительной математике одной из наиболее важных задач является создание эффективных и устойчивых алгоритмов нахождения собственных значений матрицы. Эти алгоритмы вычисления собственных значений могут также находить собственные векторы.
Подробнее: Алгоритм вычисления собственных значений
Критерий планарности Маклейна — это описание планарных графов в терминах их пространства циклов. Критерий носит имя Саундерса Маклейна, опубликовавшего критерий в 1937. Критерий утверждает, что конечный неориентированный граф является планарным тогда и только тогда, когда пространство циклов графа (по модулю 2) имеет базис циклов, в котором каждое ребро графа принадлежит не более чем двум базисным векторам.
Неравенство числа пересечений или лемма о пересечениях даёт нижнюю грань минимального числа пересечений данного графа как функцию от числа рёбер и вершин графа. Лемма утверждает, что для графов, у которых число рёбер e достаточно велико по сравнению с числом вершин n, число пересечений по меньшей мере пропорционально e3/n2.
Алгоритм распространения доверия (англ. belief propagation, также алгоритм «sum-product») — алгоритм маргинализации с помощью двунаправленной передачи сообщений на графе, применяемый для вывода на графических вероятностных моделях (таких как байесовские и марковские сети). Предложен Дж. Перлом в 1982 году.
Два-граф ы не являются графами, и их не следует путать с другими объектами, которые называются 2-графами в теории графов, в частности, с 2-регулярными графами. Для их различения используется слово «два», а не цифра «2».
Экспандер ы — это класс графов, изучение которых первыми начали московские математики М. С. Пинскер, Л. А. Бассалыго и Г. А. Маргулис в семидесятые годы XX века.
Число пересечений графа — наименьшее число элементов в представлении данного графа как графа пересечений конечных множеств, или, эквивалентно, наименьшее число клик, необходимых для покрытия всех рёбер графа.
Структурная теорема графов — это главный результат в области теории графов. Результат устанавливает глубокую и фундаментальную связь между теорией миноров графов и топологическими вложениями. Теорема была сформулирована в семнадцати статьях из серии из 23 статей Нейла Робертсона и Пола Сеймура. Доказательство теоремы очень длинно и запутано. Каварабайаши и Мохар и Ловаш провели обзор теоремы в доступном для неспециалистов виде, описав теорему и её следствия.
Поиск с возвратом , бэктрекинг (англ. backtracking) — общий метод нахождения решений задачи, в которой требуется полный перебор всех возможных вариантов в некотором множестве М. Как правило позволяет решать задачи, в которых ставятся вопросы типа: «Перечислите все возможные варианты …», «Сколько существует способов …», «Есть ли способ …», «Существует ли объект…» и т. п.
Целочисленное программирование является NP-трудной задачей. Специальный случай, 0-1 целочисленное линейное программирование, в которой переменные принимают значения 0 или 1, является одной из 21 NP-полных задач Карпа.
Планарное накрытие конечного графа G — это конечный накрывающий граф графа G, являющийся планарным графом. Любой граф, который может быть вложен в проективную плоскость, имеет планарное накрытие. Нерешённая гипотеза Сэйи Негами утверждает, что только эти графы и имеют планарные накрытия.
В теории графов
глубина дерева связного неориентированного графа G — это числовой инвариант G, минимальная высота дерева Тремо для суперграфа графа G. Этот инвариант и близкие понятия встречаются под различными именами в литературе, включая число ранжирования вершин, упорядоченное хроматическое число и минимальная высота исключения дерева. Понятие близко также к таким понятиям, как циклический ранг ориентированных графов и высота итерации языка регулярных языков ; . Интуитивно, если древесная ширина...
Геометрический остов (англ. geometric spanner) или t-остовной граф, или t-остов первоначально был введён как взвешенный граф на множестве точек в качестве вершин, для которого существует t-путь между любой парой вершин для фиксированного параметра t. t-Путь определяется как путь в графе с весом, не превосходящим в t раз пространственное расстояние между конечными точками. Параметр t называется коэффициентом растяжения остова.
Рациональное решето — это алгоритм общего вида для разложения целых чисел на простые множители. Алгоритм является частным случаем общего метода решета числового поля. Хотя он менее эффективен, чем общий алгоритм, концептуально он проще. Алгоритм может помочь понять, как работает общий метод решета числового поля.