Метод наименьших полных квадратов

  • В прикладной статистике метод наименьших полных квадратов (МНПК, TLS — англ. Total Least Squares) — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.

    Аппроксимация данных методом наименьших полных квадратов в общем виде эквивалентна лучшей по норме Фробениуса малоранговой аппрокимации матрицы данных.

Источник: Википедия

Связанные понятия

Метод главных компонент (англ. principal component analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации. Изобретён Карлом Пирсоном в 1901 году. Применяется во многих областях, в том числе, в эконометрике, биоинформатике, обработке изображений, для сжатия данных, в общественных науках.
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов...
Алгоритм Гаусса — Ньютона используется для решения задач нелинейным методом наименьших квадратов. Алгоритм является модификацией метода Ньютона для нахождения минимума функции. В отличие от метода Ньютона, алгоритм Гаусса — Ньютона может быть использован только для минимизации суммы квадратов, но его преимущество в том, что метод не требует вычисления вторых производных, что может оказаться существенной трудностью.
Вычислительные (численные) методы — методы решения математических задач в численном видеПредставление как исходных данных в задаче, так и её решения — в виде числа или набора чисел.
Не путать с «симплекс-методом» — методом оптимизации произвольной функции. См. Метод Нелдера — МидаСимплекс-метод — алгоритм решения оптимизационной задачи линейного программирования путём перебора вершин выпуклого многогранника в многомерном пространстве.

Подробнее: Симплекс-метод
Метод опорных векторов (англ. SVM, support vector machine) — набор схожих алгоритмов обучения с учителем, использующихся для задач классификации и регрессионного анализа. Принадлежит семейству линейных классификаторов и может также рассматриваться как специальный случай регуляризации по Тихонову. Особым свойством метода опорных векторов является непрерывное уменьшение эмпирической ошибки классификации и увеличение зазора, поэтому метод также известен как метод классификатора с максимальным зазором...
Квазиньютоновские методы — методы оптимизации, основанные на накоплении информации о кривизне целевой функции по наблюдениям за изменением градиента, чем принципиально отличаются от ньютоновских методов. Класс квазиньютоновских методов исключает явное формирование матрицы Гессе, заменяя её некоторым приближением.
Приближение с помощью кривых — это процесс построения кривой или математической функции, которая наилучшим образом приближается к заданным точкам с возможными ограничениями на кривую . Для построения такого приближения может использоваться либо интерполяция , где требуется точное прохождение кривой через точки, либо сглаживание, когда «сглаживающая» функция проходит через точки приближённо. Связанный раздел — регрессионный анализ, который фокусируется, главным образом, на вопросах статистического...
Регрессия Деминга эквивалентна оценке максимального правдоподобия на модели с ошибками в переменных, в которой ошибки двух переменных считаются независимыми и имеют нормальное распределение, а отношение их дисперсий, δ, известно . На практике это отношение может быть оценено из исходных данных. Однако процедура регрессии не принимает во внимание возможные ошибки в оценке отношений дисперсии.
Математи́ческий ана́лиз (классический математический анализ) — совокупность разделов математики, соответствующих историческому разделу под наименованием «анализ бесконечно малых», объединяет дифференциальное и интегральное исчисления.
Вне́шне несвя́занные уравне́ния (англ. Seemingly Unrelated Regressions (SUR)) — система эконометрических уравнений, каждое из которых является самостоятельным уравнением со своей зависимой и объясняющими экзогенными переменными. Модель предложена Зельнером в 1968 году. Важной особенностью данных уравнений является то, что несмотря на кажущуюся несвязанность уравнений их случайные ошибки предполагаются коррелированными между собой.
Алгоритм Левенберга — Марквардта — метод оптимизации, направленный на решение задач о наименьших квадратах. Является альтернативой методу Ньютона. Может рассматриваться как комбинация последнего с методом градиентного спуска или как метод доверительных областей. Алгоритм был сформулирован независимо Левенбергом (1944) и Марквардтом (1963).
Метод Ньютона, алгоритм Ньютона (также известный как метод касательных) — это итерационный численный метод нахождения корня (нуля) заданной функции. Метод был впервые предложен английским физиком, математиком и астрономом Исааком Ньютоном (1643—1727). Поиск решения осуществляется путём построения последовательных приближений и основан на принципах простой итерации. Метод обладает квадратичной сходимостью. Модификацией метода является метод хорд и касательных. Также метод Ньютона может быть использован...
Суммирующая функция делителей в теории чисел — функция, являющаяся суммой функции делителей.
В математике, матричная функция — это функция, отображающая матрицу в другую матрицу.
Поиском наилучшей проекции (англ. Projection Pursuit) называется статистический метод, состоящий в нахождении такой проекции многомерных данных, для которой достигает максимума некоторая функция качества проекции.
Формулировка через интеграл по траекториям квантовой механики — это описание квантовой теории, которое обобщает принцип действия классической механики. Оно замещает классическое определение одиночной, уникальной траектории системы полной суммой (функциональным интегралом) по бесконечному множеству всевозможных траекторий для расчёта квантовой амплитуды. Методологически формулировка через интеграл по траекториям близка к принципу Гюйгенса — Френеля из классической теории волн.
Неотрицательное матричное разложение (НМР), а также неотрицательное приближение матрицы, это группа алгоритмов в мультивариантном анализе и линейной алгебре, в которых матрица V разлагается на (обычно) две матрицы W и H, со свойством, что все три матрицы имеют неотрицательные элементы. Эта неотрицательность делает получившиеся матрицы более простыми для исследования. В приложениях, таких как обработка спектрограмм аудиосигнала или данных мускульной активности, неотрицательность свойственна рассматриваемым...
В вычислительной математике одной из наиболее важных задач является создание эффективных и устойчивых алгоритмов нахождения собственных значений матрицы. Эти алгоритмы вычисления собственных значений могут также находить собственные векторы.

Подробнее: Алгоритм вычисления собственных значений
В статистике, машинном обучении и теории информации снижение размерности — это преобразование данных, состоящее в уменьшении числа переменных путём получения главных переменных. Преобразование может быть разделено на отбор признаков и выделение признаков.

Подробнее: Снижение размерности
Множество больших тригонометрических сумм — понятие теории чисел — множество индексов, в которых преобразование Фурье характеристической функции заданного подмножества группы принимает достаточно большие значения.
Полуопределённое программирование (en: Semidefinite programming, SDP) — это подраздел выпуклого программирования, которое занимается оптимизацией линейной целевой функции (целевая функция — это заданная пользователем функция, значение которой пользователь хочет минимизировать или максимизировать) на пересечении конусов положительно полуопределённых матриц с аффинным пространством.
Вариацио́нное исчисле́ние — раздел анализа, в котором изучаются вариации функционалов. Наиболее типичная задача — найти функцию, на которой заданный функционал достигает экстремального значения.
Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение...
Коды Боуза — Чоудхури — Хоквингема (БЧХ-коды) — в теории кодирования это широкий класс циклических кодов, применяемых для защиты информации от ошибок (см. Обнаружение и исправление ошибок). Отличается возможностью построения кода с заранее определёнными корректирующими свойствами, а именно, минимальным кодовым расстоянием. Частным случаем БЧХ-кодов является код Рида — Соломона.
Расстояние Махалано́биса — мера расстояния между векторами случайных величин, обобщающая понятие евклидова расстояния.
Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.

Подробнее: Спектральный метод
О дискретном эквиваленте преобразования Лапласа см. Z-преобразование.В математике дискретный оператор Лапласа — аналог непрерывного оператора Лапласа, определяемого как отношения на графе или дискретной сетке. В случае конечномерного графа (имеющего конечное число вершин и рёбер) дискретный оператор Лапласа имеет более общее название: матрица Лапласа.

Подробнее: Дискретный оператор Лапласа
Ко́мпле́ксный ана́лиз, тео́рия фу́нкций ко́мпле́ксного переме́нного (или ко́мпле́ксной переме́нной; сокращенно — ТФКП) — раздел математического анализа, в котором рассматриваются и изучаются функции комплексного аргумента.
Ква́нтовая тео́рия по́ля (КТП) — раздел физики, изучающий поведение квантовых систем с бесконечно большим числом степеней свободы — квантовых (или квантованных) полей; является теоретической основой описания микрочастиц, их взаимодействий и превращений. Именно на квантовой теории поля базируется вся физика высоких энергий, физика элементарных частиц и физика конденсированного состояния. Квантовая теория поля в виде Стандартной модели (с добавкой масс нейтрино) сейчас является единственной экспериментально...
Метод спектрального элемента (МСЭ) для решения дифференциальных уравнений в частных производных — это метод конечных элементов, в котором используются кусочные многочлены высокой степени в качестве базисных функций. Метод спектрального элемента предложил в статье 1984 года Т. Патера.
Фи́льтр Ка́лмана — эффективный рекурсивный фильтр, оценивающий вектор состояния динамической системы, используя ряд неполных и зашумленных измерений. Назван в честь Рудольфа Калмана.
В квантовой механике, преобразование Вигнера — Вейля (названо в честь Германа Вейля и Юджина Вигнера) — обратимое отображение функций в представлении фазового пространства на операторы гильбертова пространства в представлении Шредингера.
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Теорема Крамера об алгебраических кривых даёт необходимое и достаточное условия, при которых число точек на вещественной плоскости, принадлежащие алгебраической кривой, однозначно определяют кривую в невырожденных случаях. Это число равно...
В математике монодро́ми́ей называется явление, состоящее в преобразовании некоторого объекта при обнесении его вдоль нетривиального замкнутого пути.

Подробнее: Монодромия
Ве́ктор (от лат. vector, «несущий») — в простейшем случае математический объект, характеризующийся величиной и направлением. Например, в геометрии и в естественных науках вектор есть направленный отрезок прямой в евклидовом пространстве (или на плоскости).
Анализ независимых компонент (АНК, англ. Independent Component Analysis, ICA), называемый также Метод независимых компонент (МНК) — это вычислительный метод в обработке сигналов для разделения многомерного сигнала на аддитивные подкомпоненты. Этот метод применяется при предположении, что подкомпоненты являются негауссовыми сигналами и что они статистически независимы друг от друга. АНК является специальным случаем слепого разделения сигнала. Типичным примером приложения является «Задача о шумной...
В квантовой механике, частица в одномерном периодическом потенциале — это идеализированная задача, которая может быть решена точно (при некоторых специального вида потенциалах), без упрощений. Предполагается, что потенциал бесконечен и периодичен, то есть обладает трансляционной симметрией, что, вообще говоря, не выполняется для реальных кристаллов, и всегда существует как минимум один дефект — поверхность (это приводит к другой задаче о поверхностных состояниях или таммовских уровнях).
Сглаживающий сплайн (англ. smoothing spline) это метод сглаживания (аппроксимации кривой набора зашумлённых исходных данных) с использованием сплайн-функций.
Сдвиг среднего значения — это непараметрическая техника анализа пространства признаков для определения местоположения максимума плотности вероятности, так называемый алгоритм поиска моды. Область применения техники — кластерный анализ в компьютерном зрении и обработке изображений.
Векторная авторегрессия (VAR, Vector AutoRegression) — модель динамики нескольких временных рядов, в которой текущие значения этих рядов зависят от прошлых значений этих же временных рядов. Модель предложена Кристофером Симсом как альтернатива системам одновременных уравнений, которые предполагают существенные теоретические ограничения. VAR-модели свободны от ограничений структурных моделей. Тем не менее, проблема VAR-моделей заключается в резком росте количества параметров с увеличением количества...
В данной статье приведен список различных квадратурных формул, для численного интегрирования.

Подробнее: Список квадратурных формул
Геометрический центр дискретного множества точек евклидова пространства (говоря статистическим языком — выборки) — это точка, в которой минимизируется сумма расстояний до точек множества. Геометрический центр обобщает медиану в математической статистике, которая минимизирует расстояния в одномерной выборке данных. Таким образом, геометрический центр отражает центральную тенденцию в пространствах высокой размерности. Понятие известно также по названиям 1-медиана , пространственная медиана, или точка...
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
В этой статье рассматривается математический базис общей теории относительности.

Подробнее: Математическая формулировка общей теории относительности
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
Метод золотого сечения — метод поиска экстремума действительной функции одной переменной на заданном отрезке. В основе метода лежит принцип деления отрезка в пропорциях золотого сечения. Является одним из простейших вычислительных методов решения задач оптимизации. Впервые представлен Джеком Кифером в 1953 году.
Метод конечных элементов (МКЭ) — это численный метод решения дифференциальных уравнений с частными производными, а также интегральных уравнений, возникающих при решении задач прикладной физики. Метод широко используется для решения задач механики деформируемого твёрдого тела, теплообмена, гидродинамики и электродинамики.
Вейвлеты Добеши (англ. Daubechies wavelet) — семейство ортогональных вейвлетов с компактным носителем, вычисляемым итерационным путём. Названы в честь математика из США, первой построившей данное семейство, Ингрид Добеши.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я