Коэффициент Байеса

  • Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.

Источник: Википедия

Связанные понятия

Информационный критерий Акаике (AIC) — критерий, применяющийся исключительно для выбора из нескольких статистических моделей. Разработан в 1971 как «an information criterion» («(некий) информационный критерий») Хироцугу Акаике и предложен им в статье 1974 года.
Фидуциальный вывод (от лат. fides: вера, доверие), как разновидность статистического вывода, был впервые предложен сэром Р. Э. Фишером.
Принцип минимальной длины описания (англ. minimum description length, MDL) — это формализация бритвы Оккама, в которой лучшая гипотеза (модель и её параметры) для данного набора данных это та, которая ведёт к лучшему сжиманию даных. Принцип MDL предложил Йорма Риссанен в 1978. Принцип является важной концепцией в теории информации и теории вычислительного обучения.
Наи́вный ба́йесовский классифика́тор — простой вероятностный классификатор, основанный на применении теоремы Байеса со строгими (наивными) предположениями о независимости.
Байесовская вероятность — это интерпретация понятия вероятности, используемая в байесовской теории. Вероятность определяется как степень уверенности в истинности суждения. Для определения степени уверенности в истинности суждения при получении новой информации в байесовской теории используется теорема Байеса.
Цензурированная регрессия (англ. Censored regression) — регрессия, с зависимой переменной, наблюдаемой с ограничением (цензурированием) возможных значений. При этом модель может быть цензурирована только с одной стороны (снизу или сверху) или с обеих сторон. Цензурированная регрессия отличается от усеченной регрессии (англ. truncated regression), тем что значения факторов, в отличие от зависимой переменной, наблюдаются без ограничений.
Модель бинарного выбора — применяемая в эконометрике модель зависимости бинарной переменной (принимающей всего два значения — 0 и 1) от совокупности факторов. Построение обычной линейной регрессии для таких переменных теоретически некорректно, так как условное математическое ожидание таких переменных равно вероятности того, что зависимая переменная примет значение 1, а линейная регрессия допускает и отрицательные значения и значения выше 1. Поэтому обычно используются некоторые интегральные функции...
Робастность (англ. robustness, от robust — «крепкий», «сильный», «твёрдый», «устойчивый») — свойство статистического метода, характеризующее независимость влияния на результат исследования различного рода выбросов, устойчивости к помехам. Выбросоустойчивый (робастный) метод — метод, направленный на выявление выбросов, снижение их влияния или исключение их из выборки.
Информационный критерий — применяемая в эконометрике (статистике) мера относительного качества эконометрических (статистических) моделей, учитывающая степень «подгонки» модели под данные с корректировкой (штрафом) на используемое количество оцениваемых параметров. То есть критерии основаны на неком компромиссе между точностью и сложностью модели. Критерии различаются тем, как они обеспечивают этот баланс.
Автокорреляция — статистическая взаимосвязь между последовательностями величин одного ряда, взятыми со сдвигом, например, для случайного процесса — со сдвигом по времени.
Выбор модели — это задача выбора статистической модели из набора моделей-кандидатов по имеющимся данным. В простейшем случае рассматривается существующий набор данных. Однако задача может вовлекать планирование экспериментов, так что сбор данных связан с задачей выбора модели. Если заданы кандидаты в модели с одинаковой силой предсказания или объяснения, наиболее простая модель скорее всего будет лучшим выбором (бритва Оккама).
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
Гетероскедастичность (англ. heteroscedasticity) — понятие, используемое в прикладной статистике (чаще всего — в эконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположна гомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.
Логическая вероятность — логическое отношение между двумя предложениями, степень подтверждения гипотезы H свидетельством E.
В математической статистике семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Тест отноше́ния правдоподо́бия (англ. likelihood ratio test, LR) — статистический тест, используемый для проверки ограничений на параметры статистических моделей, оценённых на основе выборочных данных. Является одним из трёх базовых тестов проверки ограничений наряду с тестом множителей Лагранжа и тестом Вальда.
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Авторегрессионная условная гетероскедастичность (англ. ARCH; AutoRegressive Conditional Heteroscedasticity) — применяемая в эконометрике модель для анализа временных рядов (в первую очередь финансовых), у которых условная (по прошлым значениям ряда) дисперсия ряда зависит от прошлых значений ряда, прошлых значений этих дисперсий и иных факторов. Данные модели предназначены для «объяснения» кластеризации волатильности на финансовых рынках, когда периоды высокой волатильности длятся некоторое время...
Метод наименьших квадратов (МНК) — математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов...
Качественная, дискретная, или категорийная переменная — это переменная, которая может принимать одно из ограниченного и, обычно, фиксированного числа возможных значений, назначая каждую единицу наблюдения определённой группе или номинальной категории на основе некоторого качественного свойства. В информатике и некоторых других ветвях математики качественные переменные называются перечислениями или перечисляемыми типами. Обычно (хотя не в этой статье), каждое из возможных значений качественной переменной...
Ме́тод максима́льного правдоподо́бия или метод наибольшего правдоподобия (ММП, ML, MLE — англ. maximum likelihood estimation) в математической статистике — это метод оценивания неизвестного параметра путём максимизации функции правдоподобия. Основан на предположении о том, что вся информация о статистической выборке содержится в функции правдоподобия.
Обобщённый ме́тод моме́нтов (ОММ; англ. GMM — Generalized Method of Moments) — метод, применяемый в математической статистике и эконометрике для оценки неизвестных параметров распределений и эконометрических моделей, являющийся обобщением классического метода моментов. Метод был предложен Хансеном в 1982 году. В отличие от классического метода моментов количество ограничений может быть больше количества оцениваемых параметров.
Метод группового учёта аргументов (МГУА) — семейство индуктивных алгоритмов для математического моделирования мультипараметрических данных. Метод основан на рекурсивном селективном отборе моделей, на основе которых строятся более сложные модели. Точность моделирования на каждом следующем шаге рекурсии увеличивается за счет усложнения модели.
Принцип максимума энтропии утверждает, что наиболее характерными распределениями вероятностей состояний неопределенной среды являются такие распределения, которые максимизируют выбранную меру неопределенности при заданной информации о «поведении» среды. Впервые подобный подход использовал Д.Гиббс для нахождения экстремальных функций распределений физических ансамблей частиц. Впоследствии Э.Джейнсом был предложен формализм восстановления неизвестных законов распределения случайных величин при наличии...
Выборка по значимости (англ. importance sampling, далее ВЗ) — один из методов уменьшения дисперсии случайной величины, который используется для улучшения сходимости процесса моделирования какой-либо величины методом Монте-Карло. Идея ВЗ основывается на том, что некоторые значения случайной величины в процессе моделирования имеют бо́льшую значимость (вероятность) для оцениваемой функции (параметра), чем другие. Если эти «более вероятные» значения будут появляться в процессе выбора случайной величины...
Минимизация эмпирического риска (МЭР, англ. Empirical risk minimization, ERM) — это принцип статистической теории обучения, который определяет семейство алгоритмов обучения и который задаёт теоретические границы производительности.
Обучение на примерах (англ. Learning from Examples) - вид обучения, при котором интеллектуальной системе предъявляется набор положительных и отрицательных примеров, связанных с какой-либо заранее неизвестной закономерностью. В интеллектуальных системах вырабатываются решающие правила, с помощью которых происходит разделение множества примеров на положительные и отрицательные. Качество разделения, как правило, проверяется экзаменационной выборкой примеров.
ДСМ-метод — метод автоматического порождения гипотез. Формализует схему правдоподобного и достоверного вывода, называемую ДСМ-рассуждением.
Гауссовский процесс назван так в честь Карла Фридриха Гаусса, поскольку в его основе лежит понятие гауссовского распределения (нормального распределения). Гауссовский процесс может рассматриваться как бесконечномерное обобщение многомерных нормальных распределений. Эти процессы применяются в статистическом моделировании; в частности используются свойства нормальности. Например, если случайный процесс моделируется как гауссовский, то распределения различных производных величин, такие как среднее значение...
Оккамово обучение в теории вычислительного обучения является моделью алгоритмического обучения, где целью обучения является получение сжатого представления имеющихся тренировочных данных. Метод тесно связан с почти корректным обучением (ПК обучение, англ. Probably Approximately Correct learning, PAC learning), где учитель оценивает прогнозирующую способность тестового набора.
Демпстера-Шафера теория — математическая теория очевидностей (свидетельств) (), основанная на функции доверия (belief functions) и функции правдоподобия (plausible reasoning), которые используются, чтобы скомбинировать отдельные части информации (свидетельства) для вычисления вероятности события. Теория была развита Артуром П. Демпстером и Гленном Шафером.
Ме́тоды Ру́нге — Ку́тты (в литературе встречаются названия: ме́тоды Ру́нге — Ку́тта или же ме́тоды Ру́нге — Кутта́) — большой класс численных методов решения задачи Коши для обыкновенных дифференциальных уравнений и их систем. Первые методы данного класса были предложены около 1900 года немецкими математиками К. Рунге и М. В. Куттой.
Анализ полных наблюдений (англ. listwise/casewise deletion, реже англ. complete-case analysis) — статистический метод обработки пропущенных данных, основанный на удалении всех наблюдений с неполными признаковыми описаниями. Считается самым простым способом разрешения проблемы пропущенных данных.
Надёжностью называется один из критериев качества теста, его устойчивость по отношению к погрешностям измерения. Различают два вида надёжности — надёжность как устойчивость и надёжность как внутреннюю согласованность.

Подробнее: Надёжность психологического теста
Проблема Гальтона, названная в честь сэра Фрэнсиса Гальтона, представляет собой проблему выведения заключений из кросс-культурных данных на основании статистического феномена, известного на сегодняшний день как сетевая автокорреляция. В настоящее время проблема признается проблемой общего характера, которая применяется ко всем неэкспериментальным исследованиям, а также к экспериментальному проектированию. Ее можно наиболее просто описать как проблему внешних зависимостей при проведении статистических...
Анализ независимых компонент (АНК, англ. Independent Component Analysis, ICA), называемый также Метод независимых компонент (МНК) — это вычислительный метод в обработке сигналов для разделения многомерного сигнала на аддитивные подкомпоненты. Этот метод применяется при предположении, что подкомпоненты являются негауссовыми сигналами и что они статистически независимы друг от друга. АНК является специальным случаем слепого разделения сигнала. Типичным примером приложения является «Задача о шумной...
Тео́рия приня́тия реше́ний — область исследования, вовлекающая понятия и методы математики, статистики, экономики, менеджмента и психологии с целью изучения закономерностей выбора людьми путей решения проблем и задач, а также способов достижения желаемого результата.
В теории массового обслуживания, разделе теории вероятностей, законом Литтла (англ. Little's law, также результатом, леммой, формулой Литтла) называют сформулированную американским учёным Джоном Литтлом теорему...

Подробнее: Закон Литтла
Логистическая регрессия или логит-регрессия (англ. logit model) — это статистическая модель, используемая для прогнозирования вероятности возникновения некоторого события путём подгонки данных к логистической кривой.
История теории вероятностей отмечена многими уникальными особенностями. Прежде всего, в отличие от появившихся примерно в то же время других разделов математики (например, математического анализа или аналитической геометрии), у теории вероятностей по существу не было античных или средневековых предшественников, она целиком — создание Нового времени. Долгое время теория вероятностей считалась чисто опытной наукой и «не совсем математикой», её строгое обоснование было разработано только в 1929 году...
Модели дискретного выбора — экономические (эконометрические) модели, позволяющие описывать, объяснять и прогнозировать выбор между, двумя или более альтернативами (то есть когда множество альтернатив не более чем счетно). Модели дискретного выбора позволяют на основе некоторых характеристик (атрибутов) экономического субъекта или ситуации оценить вероятность выбора той или иной альтернативы.

Подробнее: Дискретный выбор
Вероятностно приблизительно корректное обучение (ВПК обучение, англ. Probably Approximately Correct learning, (PAC learning) в теории вычислительного обучения — это схема математического анализа машинного обучения. Схему предложил в 1984 Лесли Вэлиант.
Статистическая теория обучения — это модель для обучения машин на основе статистики и функционального анализа. Статистическая теория обучения имеет дело с задачами нахождения функции предсказывания, основанной на данных. Статистическая теория обучения привела к успешным приложениям в таких областях, как компьютерное зрение, распознавание речи, биоинформатика и бейсбол.
Вычисли́тельная сло́жность — понятие в информатике и теории алгоритмов, обозначающее функцию зависимости объёма работы, которая выполняется некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией сложности вычислений. Объём работы обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством элементарных шагов, необходимых для решения задачи, тогда как пространство определяется...
Идентификация систем — совокупность методов для построения математических моделей динамической системы по данным наблюдений. Математическая модель в данном контексте означает математическое описание поведения какой-либо системы или процесса в частотной или временной области, к примеру, физических процессов (движение механической системы под действием силы тяжести), экономического процесса (реакция биржевых котировок на внешние возмущения) и т. п. В настоящее время эта область теории управления хорошо...
Метод Куайна—Мак-Класки (англ. Quine–McCluskey method) — табличный метод минимизации булевых функций, предложенный Уиллардом Куайном и усовершенствованный Эдвардом Мак-Класки. Представляет собой попытку избавиться от недостатков метода Куайна.
Шкала (измерительная шкала) — это знаковая система, для которой задано отображение (операция измерения), ставящее в соответствие реальным объектам (событиям) тот или иной элемент (значение) шкалы. Формально шкалой называют кортеж, , где X — множество реальных объектов (событий), φ — отображение, Y — множество элементов (значений) знаковой системы.
Двоичная, бинарная или дихотомическая классификация — это задача классификации элементов заданного множества в две группы (предсказание, какой из групп принадлежит каждый элемент множества) на основе правила классификации. Контекст, в котором требуется решение, имеет ли объект некоторое качественное свойство, некоторые специфичные характеристики или некоторую типичную двоичную классификацию, включает...
Математи́ческая моде́ль — математическое представление реальности, один из вариантов модели как системы, исследование которой позволяет получать информацию о некоторой другой системе.
Тео́рия алгори́тмов — наука, находящаяся на стыке математики и информатики, изучающая общие свойства и закономерности алгоритмов и разнообразные формальные модели их представления. К задачам теории алгоритмов относятся формальное доказательство алгоритмической неразрешимости задач, асимптотический анализ сложности алгоритмов, классификация алгоритмов в соответствии с классами сложности, разработка критериев сравнительной оценки качества алгоритмов и т. п. Вместе с математической логикой теория алгоритмов...
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я