Связанные понятия
База знаний (БЗ; англ. knowledge base, KB) — база данных, содержащая правила вывода и информацию о человеческом опыте и знаниях в некоторой предметной области (ISO/IEC/IEEE 24765-2010, ISO/IEC 2382-1:1993). В самообучающихся системах база знаний также содержит информацию, являющуюся результатом решения предыдущих задач.
Предме́тная о́бласть — множество всех предметов, свойства которых и отношения между которыми рассматриваются в научной теории. В логике — подразумеваемая область возможных значений предметных переменных логического языка.
Экспе́ртная систе́ма (ЭС, англ. expert system) — компьютерная система, способная частично заменить специалиста-эксперта в разрешении проблемной ситуации. Современные экспертные системы начали разрабатываться исследователями искусственного интеллекта в 1970-х годах, а в 1980-х годах получили коммерческое подкрепление. Предшественники экспертных систем были предложены в 1832 году С. Н. Корсаковым, создавшим механические устройства, так называемые «интеллектуальные машины», позволявшие находить решения...
Многоагентная система (МАС, англ. Multi-agent system) — это система, образованная несколькими взаимодействующими интеллектуальными агентами. Многоагентные системы могут быть использованы для решения таких проблем, которые сложно или невозможно решить с помощью одного агента или монолитной системы. Примерами таких задач являются онлайн-торговля, ликвидация чрезвычайных ситуаций, и моделирование социальных структур.
Агентное моделирование (англ. agent-based model (ABM))— метод имитационного моделирования, исследующий поведение децентрализованных агентов и то, как такое поведение определяет поведение всей системы в целом. В отличие от системной динамики аналитик определяет поведение агентов на индивидуальном уровне, а глобальное поведение возникает как результат деятельности множества агентов (моделирование «снизу вверх»).
Имитационное моделирование (англ. simulation modeling) — метод исследования, при котором изучаемая система заменяется моделью, с достаточной точностью описывающей реальную систему (построенная модель описывает процессы так, как они проходили бы в действительности), с которой проводятся эксперименты с целью получения информации об этой системе. Такую модель можно «проиграть» во времени, как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером...
Визуализация данных — это представление данных в виде, который обеспечивает наиболее эффективную работу человека по их изучению. Визуализация данных находит широкое применение в научных и статистических исследованиях (в частности, в прогнозировании, интеллектуальном анализе данных, бизнес-анализе), в педагогическом дизайне для обучения и тестирования, в новостных сводках и аналитических обзорах. Визуализация данных связана с визуализацией информации, инфографикой, визуализацией научных данных, разведочным...
Обучение с подкреплением (англ. reinforcement learning) — один из способов машинного обучения, в ходе которого испытуемая система (агент) обучается, взаимодействуя с некоторой средой. С точки зрения кибернетики, является одним из видов кибернетического эксперимента. Откликом среды (а не специальной системы управления подкреплением, как это происходит в обучении с учителем) на принятые решения являются сигналы подкрепления, поэтому такое обучение является частным случаем обучения с учителем, но учителем...
Эволюционные алгоритмы — направление в искусственном интеллекте (раздел эволюционного моделирования), которое использует и моделирует процессы естественного отбора.
Исчисление процессов или алгебра процессов — семейство связанных подходов к формальному моделированию параллельных систем.
Представление знаний — вопрос, возникающий в когнитологии (науке о мышлении), в информатике и в исследованиях искусственного интеллекта.
Извлечение информации (англ. information extraction) — это задача автоматического извлечения (построения) структурированных данных из неструктурированных или слабоструктурированных машиночитаемых документов.
Анализ данных — область математики и информатики, занимающаяся построением и исследованием наиболее общих математических методов и вычислительных алгоритмов извлечения знаний из экспериментальных (в широком смысле) данных; процесс исследования, фильтрации, преобразования и моделирования данных с целью извлечения полезной информации и принятия решений. Анализ данных имеет множество аспектов и подходов, охватывает разные методы в различных областях науки и деятельности.
В компьютерных науках програ́ммный аге́нт — это программа, которая вступает в отношение посредничества с пользователем или другой программой. Слово «агент» происходит от латинского agere (делать) и означает соглашение выполнять действия от имени кого-либо. Такие «действия от имени» подразумевают право решать, какие действия (если они нужны) являются целесообразными. Идея состоит в том, что агенты не запускаются непосредственно для решения задачи, а активизируются самостоятельно.
Модель данных — это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует пользователь. Эти объекты позволяют моделировать структуру данных, а операторы — поведение данных.
Ка́чество програ́ммного обеспечения — способность программного продукта при заданных условиях удовлетворять установленным или предполагаемым потребностям (ISO/IEC 25000:2014).
Инженерия знаний (англ. knowledge engineering) — область наук об искусственном интеллекте, связанная с разработкой экспертных систем и баз знаний. Изучает методы и средства извлечения, представления, структурирования и использования знаний.
Релева́нтность (англ. relevance — актуальность, уместность) в информационном поиске — соответствие интента (поискового намерения), заложенного в запросе и выдаче в поисковой системе, полученной в результате этого запроса. Пользователь, который вводит запрос в поисковую систему ожидает, что результаты будут соответствовать намерению, которое он заложил в запросе, иными словами он получит релевантную выдачу.
Онтоло́гия в информатике (новолат. ontologia от др.-греч. ὤν род. п. ὄντος — сущее, то, что существует и λόγος — учение, наука) — это попытка всеобъемлющей и подробной формализации некоторой области знаний с помощью концептуальной схемы. Обычно такая схема состоит из структуры данных, содержащей все релевантные классы объектов, их связи и правила (теоремы, ограничения), принятые в этой области. Этот термин в информатике является производным от древнего философского понятия «онтология».
Машинное обучение (англ. machine learning, ML) — класс методов искусственного интеллекта, характерной чертой которых является не прямое решение задачи, а обучение в процессе применения решений множества сходных задач. Для построения таких методов используются средства математической статистики, численных методов, методов оптимизации, теории вероятностей, теории графов, различные техники работы с данными в цифровой форме.
Чёрный я́щик — термин, используемый для обозначения системы, внутреннее устройство и механизм работы которой очень сложны, неизвестны или неважны в рамках данной задачи. «Метод чёрного ящика» — метод исследования таких систем, когда вместо свойств и взаимосвязей составных частей системы, изучается реакция системы, как целого, на изменяющиеся условия.
Обработка естественного языка (Natural Language Processing, NLP) — общее направление искусственного интеллекта и математической лингвистики. Оно изучает проблемы компьютерного анализа и синтеза естественных языков. Применительно к искусственному интеллекту анализ означает понимание языка, а синтез — генерацию грамотного текста. Решение этих проблем будет означать создание более удобной формы взаимодействия компьютера и человека.
Теория распознава́ния о́браза — раздел информатики и смежных дисциплин, развивающий основы и методы классификации и идентификации предметов, явлений, процессов, сигналов, ситуаций и т. п. объектов, которые характеризуются конечным набором некоторых свойств и признаков. Такие задачи решаются довольно часто, например, при переходе или проезде улицы по сигналам светофора. Распознавание цвета загоревшейся лампы светофора и знание правил дорожного движения позволяет принять правильное решение о том, можно...
Требования к программному обеспечению — совокупность утверждений относительно атрибутов, свойств или качеств программной системы, подлежащей реализации. Создаются в процессе разработки требований к программному обеспечению, в результате анализа требований.
Схема базы данных включает в себя описания содержания, структуры и ограничений целостности, используемые для создания и поддержки базы данных.
Распределённая система — система, для которой отношения местоположений элементов (или групп элементов) играют существенную роль с точки зрения функционирования системы, а, следовательно, и с точки зрения анализа и синтеза системы.
Интеллектуальная информационная система (ИИС) - комплекс программных, лингвистических и логико-математических средств для реализации основной задачи – осуществления поддержки деятельности человека и поиска информации в режиме продвинутого диалога на естественном языке.
Человеко-машинный интерфейс (ЧМИ) (англ. Human-machine interface, HMI) — широкое понятие, охватывающее инженерные решения, обеспечивающие взаимодействие человека-оператора с управляемыми им машинами.
Прототипи́рование программного обеспечения (от англ. prototyping) — этап разработки программного обеспечения (ПО), процесс создания прототи́па программы — макета (черновой, пробной версии) программы, обычно — с целью проверки пригодности предлагаемых для применения концепций, архитектурных и/или технологических решений, а также для представления программы заказчику на ранних стадиях процесса разработки.
Абстракция данных — популярная и в общем неверно определяемая техника программирования. Фундаментальная идея состоит в разделении несущественных деталей реализации подпрограммы и характеристик, существенных для корректного её использования. Такое разделение может быть выражено через специальный «интерфейс», сосредотачивающий описание всех возможных применений программы.
Бизнес-логика — в разработке информационных систем — совокупность правил, принципов, зависимостей поведения объектов предметной области (области человеческой деятельности, которую система поддерживает). Иначе можно сказать, что бизнес-логика — это реализация правил и ограничений автоматизируемых операций. Является синонимом термина «логика предметной области» (англ. domain logic). Бизнес-логика задает правила, которым подчиняются данные предметной области.
Иерархическая модель данных — это модель данных, где используется представление базы данных в виде древовидной (иерархической) структуры, состоящей из объектов (данных) различных уровней.
Формализа́ция — представление какой-либо содержательной области (рассуждений, доказательств, процедур классификации, поиска информации, научных теорий) в виде формальной системы или исчисления.
Система реального времени (СРВ) — это система, которая должна реагировать на события во внешней по отношению к системе среде или воздействовать на среду в рамках требуемых временных ограничений. Оксфордский словарь английского языка говорит об СРВ как о системе, для которой важно время получения результата. Другими словами, обработка информации системой должна производиться за определённый конечный период времени, чтобы поддерживать постоянное и своевременное взаимодействие со средой. Естественно...
Эвристический алгоритм (эвристика) — алгоритм решения задачи, включающий практический метод, не являющийся гарантированно точным или оптимальным, но достаточный для решения поставленной задачи. Позволяет ускорить решение задачи в тех случаях, когда точное решение не может быть найдено.
Фолксоно́мия (англ. folksonomy, от folk — народный + taxonomy таксономия, от гр. расположение по порядку + закон) — народная классификация, практика совместной категоризации информации (текстов, ссылок, фото, видеоклипов и т. п.) посредством произвольно выбираемых меток, называемых тегами.
Обучение без учителя (самообучение, спонтанное обучение, англ. Unsupervised learning) — один из способов машинного обучения, при котором испытуемая система спонтанно обучается выполнять поставленную задачу без вмешательства со стороны экспериментатора. С точки зрения кибернетики, это является одним из видов кибернетического эксперимента. Как правило, это пригодно только для задач, в которых известны описания множества объектов (обучающей выборки), и требуется обнаружить внутренние взаимосвязи, зависимости...
Нейронная сеть (биологическая нейронная сеть) — совокупность нейронов головного и спинного мозга центральной нервной системы (ЦНС) и ганглия периферической нервной системы (ПНС), которые связаны или функционально объединены в нервной системе, выполняют специфические физиологические функции.
Ме́тод проб и оши́бок (в просторечии также: метод (научного) тыка) — является врождённым эмпирическим методом мышления человека. Также этот метод называют методом перебора вариантов.
Храни́лище да́нных (англ. Data Warehouse) — предметно-ориентированная информационная база данных, специально разработанная и предназначенная для подготовки отчётов и бизнес-анализа с целью поддержки принятия решений в организации. Строится на базе систем управления базами данных и систем поддержки принятия решений. Данные, поступающие в хранилище данных, как правило, доступны только для чтения.
Отображение онтологий (англ. ontology alignment или ontology matching) — это процесс установления соответствий между понятиями (концептами) нескольких онтологий. Множество таких соответствий и называется «отображением». Термин имеет разное значение в компьютерной, когнитивной областях и философии.
Обуче́ние с учи́телем (англ. Supervised learning) — один из способов машинного обучения, в ходе которого испытуемая система принудительно обучается с помощью примеров «стимул-реакция». С точки зрения кибернетики, является одним из видов кибернетического эксперимента. Между входами и эталонными выходами (стимул-реакция) может существовать некоторая зависимость, но она неизвестна. Известна только конечная совокупность прецедентов — пар «стимул-реакция», называемая обучающей выборкой. На основе этих...
Формальная верификация или формальное доказательство — формальное доказательство соответствия или несоответствия формального предмета верификации его формальному описанию. Предметом выступают алгоритмы, программы и другие доказательства.
В машинном обучении генетическое программирование (ГП) — автоматическое создание или изменение программ с помощью генетических алгоритмов. С помощью этой методологии «выращиваются» программы, всё лучше и лучше (в соответствии с определенной функцией приспособленности для хромосом) решающие поставленную вычислительную задачу.