Связанные понятия
В геометрии правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.
Идеальный треугольник — треугольник в геометрии Лобачевского, все три вершины которого являются идеальными, или бесконечно удалёнными, точками. Идеальные треугольники иногда называют трижды асимптотическими треугольниками. Их вершины иногда называют идеальными вершинами. Все идеальные треугольники равны.
Выпуклые метрические пространства интуитивно определяются как метрические пространства с таким свойством, что любой «отрезок», который соединяет две точки этого пространства, содержит другие точки, кроме своих концов.
Подробнее: Выпуклое метрическое пространство
Наибольший многоугольник единичного диаметра — многоугольник с n сторонами (для заданного числа n), диаметр которого равен единице (то есть любые две его точки находятся друг от друга на расстоянии, не превосходящем единицы), и имеющий наибольшую площадь среди других n-угольников диаметра единица. Решением (не уникальным) для n = 4 является квадрат, решением для нечётных n является правильный многоугольник, при этом для остальных чётных n правильный многоугольник наибольшим не будет.
Теорема о четырёх вершинах утверждает, что функция кривизны простой замкнутой гладкой плоской кривой имеет по меньшей мере четыре локальных экстремума (в частности, по меньшей мере два локальных максимума и по меньшей мере два локальных минимума). Название теоремы отражает соглашение называть экстремальные точки функции кривизны вершинами.
В геометрии
домино замощение области в евклидовой плоскости — это мозаика области плитками домино, образованными объединением двух единичных квадратов, соединённых по ребру. Эквивалентно это паросочетание в графе решётки, образованное помещением вершины в центр каждого квадрата области и соединением двух вершин, если два соответствующих квадрата смежны.
В геометрии конциклическими (или гомоциклическими) точками называют точки, находящиеся на одной окружности. Три точки на плоскости, не лежащие на одной прямой, всегда лежат на одной окружности, поэтому иногда термин «конциклические» прилагают только к наборам из 4 или более точек.
Подробнее: Конциклические точки
При визуализации графов, когда рёбра графа представляются ломаными (последовательностью отрезков, соединённых в точках излома), желательно минимизировать число изломов на ребро (что иногда называется сложностью кривой) или общее число изломов на рисунке. Минимизация изломов — это алгоритмическая задача поиска рисунка графа, минимизирующего указанные величины.
Подробнее: Минимизация изломов
Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а...
Симплициальная (или комбинаторная) d-сфера — это симплициальный комплекс, гомеоморфный d-мерной сфере. Некоторые симплициальные сферы появляются как границы выпуклого многогранника, однако в более высоких размерностях большинство симплициальных сфер не может быть получено таким образом.
Апейрогон (от др.-греч. ἄπειρος — бесконечный или безграничный и др.-греч. γωνία — угол) — обобщённый многоугольник со счётно-бесконечным числом сторон.
Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.
Нормальная форма Чибрарио — нормальная форма дифференциального уравнения, не разрешённого относительно производной, в окрестности простейшей особой точки. Название предложено В. И. Арнольдом в честь итальянского математика Марии Чибрарио, установившей эту нормальную форму для одного класса уравнений.
Описанный многоугольник , известный также как тангенциальный многоугольник — это выпуклый многоугольник, который содержит вписанную окружность. Это окружность, которая касательна каждой стороны многоугольника. Двойственный многоугольник описанного многоугольника — это многоугольник, который имеет описанную окружность, проходящую через все его вершины.
Блоковый многогранник — это (многомерный) многогранник, образованный из симплекса путём многократного приклеивания другого симплекса к одной из его фасет.
Теорема Кейси или Кэзи — теорема в евклидовой геометрии, обобщающая неравенство Птолемея. Названа по имени ирландского математика Джона Кейси.
В планиметрии изотоми́ческим сопряже́нием называется одно из преобразований плоскости, порождаемое заданным на плоскости треугольником ABC.
Подробнее: Изотомическое сопряжение
Вложение Сегре используется в проективной геометрии для того, чтобы рассматривать прямое произведение двух проективных пространств как проективное многообразие. Названо в честь итальянского математика Беньямино Сегре.
Веер Кнастера — Куратовского — пример такого связного подмножества плоскости, удаление из которого одной точки делает его вполне несвязным.
В геометрии трисектриса Маклорена — это кубика, примечательная своим свойством трисекции, поскольку она может быть использована для трисекции угла. Её можно определить как геометрическое место точек пересечения двух прямых, каждая из которых вращаются равномерно вокруг двух различных точек (полюсов) с отношением угловых скоростей 1:3, при этом первоначально прямые совпадают с прямой, проходящей через эти полюса. Обобщение этого построения называется Секущая Маклорена. Секущая названа в честь Колина...
В геометрии число Хееша фигуры — это максимальное число слоёв копий той же фигуры, которые могут её окружать. Задача Хееша — это задача определения набора чисел, которые могут быть числами Хееша. И то, и другое названы именем немецкого геометра Генриха Хееша , который нашёл мозаику с числом Хееша 1 (объединение квадрата, правильного треугольника и треугольника с углами 30-60-90) и предложил более общую задачу.
Гипе́рбола Ки́перта — гипербола, определяемая по данному треугольнику. Если последний представляет собой треугольник общего положения, то эта гипербола является единственным коническим сечением, проходящим через его вершины, ортоцентр и центроид.
Слабая раскраска — это специальный вид разметки графа. Слабая k-раскраска графа G = (V, E) назначает цвета c(v) ∈ {1, 2, ..., k} всем вершинам v ∈ V, так что каждая неизолированная вершина смежна по меньшей мере одной вершине другого цвета. В формальных обозначениях, для любой неизолированной вершины v ∈ V существует вершина u ∈ U с {u, v} ∈ E и c(u) ≠ c(v).
Важнейшими с точки зрения приложений характеристических функций к выводу асимптотических формул теории вероятностей являются две предельные теоремы — прямая и обратная. Эти теоремы устанавливают, что соответствие, существующее между функциями распределения и характеристическими функциями, не только взаимно однозначно, но и непрерывно.
Подробнее: Прямая и обратная предельная теорема
Центрированное квадратное число — это центрированное полигональное число, которое представляет квадрат с точкой в центре и все остальные окружающие точки, находящиеся на квадратных слоях.
В визуализации графов и геометрической теории графов число наклонов графа — это минимальное возможное число различных коэффициентов наклона рёбер в рисунке графа, в котором вершины представляются точками евклидовой плоскости, а рёбрами являются отрезки, которые не проходят через вершины, неинцидентные этим рёбрам.
Подробнее: Число наклонов графа
В математике константой
Чигера (также числом Чигера или изопериметрическим числом) графа называется числовая характеристика графа, отражающая, есть ли у графа «узкое место» или нет. Константа Чигера как способ измерения наличия «узкого места» представляет интерес во многих областях, например, для создания сильно связанных компьютерных сетей, для тасования карт и в топологии малых размерностей (в частности, при изучении гиперболических 3-мерных многообразий). Названа в честь математика Джефа Чигера...
Пра́вильный стодвадцатияче́йник, или просто стодвадцатияче́йник — один из правильных многоячейников в четырёхмерном пространстве. Известен также под другими названиями: гекатоникосахор (от др.-греч. ἑκατόν — «сто», εἴκοσι — «двадцать» и χώρος — «место, пространство»), гипердодека́эдр (поскольку является четырёхмерным аналогом додекаэдра), додекаплекс (то есть «комплекс додекаэдров»), полидодека́эдр. Двойственен шестисотячейнику.
Подробнее: Стодвадцатиячейник
Большой ромбогексаэдр — это невыпуклый однородный многогранник. Двойственным ему является большой ромбогексакрон. Вершинная фигура — самопересекающийся четырёхугольник.
В теории категорий, понятие элемента (или точки) обобщает обычное понятие элемента множества на объект произвольной категории. Иногда оно позволяет переформулировать свойства морфизмов (например, свойство мономорфизма), которые обычно описываются при помощи универсальных свойств в более привычных терминах действия отображения на элементах. Этот подход к теории категорий (и особенно его использование в лемме Йонеды) был предложен Гротендиком.
Подробнее: Элемент (теория категорий)
В математике
Теорема Риба об устойчивости утверждает, что если слоение коразмерности один имеет замкнутый слой с конечной фундаментальной группой, то все его слои замкнуты и имеют конечную фундаментальную группу. Доказана французским математиком Жоржем Рибом.
Фуксова модель — это представление гиперболической римановой поверхности R как факторповерхности верхней полуплоскости H по фуксовой группе. Любая гиперболическая риманова поверхность позволяет такое представление. Концепция названа именем Лазаря Фукса.
Единичный отрезок — величина, принимаемая за единицу при геометрических построениях. При изображении декартовой системы координат, единичный отрезок обычно отмечается на каждой из осей.
Икосианы — это некоммутативная алгебраическая система, обнаруженная ирландским математиком Уильямом Роуэном Гамильтоном в 1856 году. В современной терминологии он нашёл задание группы вращений икосаэдра с помощью генераторов и связей.
В теории чисел квадратным треугольным числом (или треугольным квадратным числом) называется число, являющееся как треугольным, так и квадратным.
Подробнее: Квадратное треугольное число
Теорема о гномоне — это геометрическая теорема. Она утверждает, что два параллелограмма в гномоне имеют равную площадь.
В геометрии
гиробифастигиум или двускатный повёрнутый бикупол является 26-м многогранником Джонсона (J26). Его можно построить объединением двух треугольных призм с правильными гранями по соответствующим квадратным граням с поворотом одной призмы на 90º . Это единственное тело Джонсона, которым можно заполнить трёхмерное пространство.
Флаг в геометрии многогранников — последовательность граней (различной размерности) абстрактного многогранника, в которой каждая предыдущая грань содержится в последующей и последовательность содержит ровно по одной грани каждой размерности.
В теории колец,
простой модуль (также используется название «неприводимый модуль») над кольцом R — это модуль над R, не имеющий ненулевых собственных подмодулей. Эквивалентно, модуль является простым тогда и только тогда, когда любой циклический модуль, порожденный одним его элементом (ненулевым элементом), совпадает со всем модулем. Простые модули служат для построения модулей конечной длины, в этом смысле они похожи на простые группы.
Алгебраическая связность графа G — это второе из минимальных собственных значений матрицы Кирхгофа графа G. Это значение больше нуля в том и только в том случае, когда граф G является связным. Это следствие того факта, что сколько раз значение 0 появляется в качестве собственного значения матрицы Кирхгофа, из стольких компонент связности состоит граф. Величина этого значения отражает насколько хорошо связен весь граф и используется для анализа устойчивости и синхронизации сетей.
Полупростые модули (вполне приводимые модули) — общеалгебраические модули, которые можно легко восстановить по их частям. Кольцо, являющееся полупростым модулем над самим собой, называется артиновым полупростым кольцом. Важный пример полупростого кольца — групповое кольцо конечной группы над полем характеристики ноль. Структура полупростых колец описывается теоремой Веддербёрна — Артина: все такие кольца являются прямыми произведениями колец матриц.
Подробнее: Полупростой модуль
Говорят, что семейство графов имеет ограниченное расширение, если все его миноры ограниченной глубины являются редкими графами. Много естественных семейств редких графов имеют ограниченное расширение. Близкое, но более сильное свойство, полиномиальное расширение, эквивалентно существованию теорем разбиения для этих семейств. Семейства с этими свойствами имеют эффективные алгоритмы для задач, в которые входят задача поиска изоморфного подграфа и проверка моделей для теории первого порядка для графов...
Подробнее: Ограниченное расширение графа
Семиуго́льник , называемый иногда гептагон — многоугольник с семью углами. Семиугольником также называют всякий предмет такой формы.