Гипогамильтонов граф

  • В теории графов говорят, что граф G гипогамильтонов, если сам по себе граф не имеет гамильтонова цикла, но любой граф, полученный удалением одной вершины из G, является гамильтоновым.

Источник: Википедия

Связанные понятия

В теории графов нечётные графы On — это семейство симметричных графов с высоким нечётным обхватом, определённых на некоторых семействах множеств. Они включают и обобщают графы Петерсена.

Подробнее: Нечётный граф
Снарк в теории графов — связный кубический граф без мостов c хроматическим индексом 4. Другими словами, это граф, в котором каждая вершина имеет три соседние вершины и рёбра нельзя выкрасить только в три цвета, так чтобы два ребра одного цвета не сходились в одной вершине. (По теореме Визинга хроматический индекс кубического графа равен 3 или 4.) Чтобы избежать тривиальных случаев, снарками часто не считают графы, имеющие обхват меньше 5.
В теории графов графом Халина называется некоторый вид планарного графа, который строится из дерева, имеющего по меньшей мере 4 вершины, ни одна из которых не имеет в точности двух соседей. Дерево рисуется на плоскости так, что никакие рёбра не пересекаются, затем добавляются рёбра, соединяющие все его листья в цикл. Графы Халина названы по имени немецкого математика Рудольфа Халина, изучавшего их в 1971 году, но кубические графы Халина изучались за столетие до этого английским математиком Томасом...

Подробнее: Граф Халина
В топологической теории графов 1-планарный граф — граф, который может быть нарисован в евклидовой плоскости таким образом, что каждое ребро имеет максимум одно пересечение с единственным другим ребром.
В теории графов outerplanar graph — это граф, допускающий планарную диаграмму, в которой все вершины принадлежат внешней грани.

Подробнее: Внешнепланарный граф
В теории графов графом без клешней называется граф, который не содержит порождённых подграфов, изоморфных K1,3 (клешней).

Подробнее: Граф без клешней
Граф Аполлония — это неориентированный граф, образованный рекурсивным процессом подразделения треугольника на три меньших треугольника. Графы Аполлония можно эквивалентно определить как планарные 3-деревья, как максимальные планарные хордальные графы, как однозначно 4-раскрашиваемые планарные графы или как графы блоковых многогранников. Графы названы именем Аполлония Пергского, изучавшего связанные построения упаковки кругов.
Гипотеза Эрдёша-Бура — математическая проблема, касающаяся числа Рамсея на разреженных графах.
Вырожденность известна также под именем k-ядерное число, ширина и зацепление, и, по существу, это то же самое, что и число раскраски или число Секереша — Вилфа. k-Вырожденные графы называются также k-индуктивными графами. Вырожденность графа может быть вычислена за линейное время с помощью алгоритма, который последовательно удаляет вершины с минимальной степенью. Компонента связности, оставшаяся после удаления всех вершин со степенью , меньшей k, называется k-ядром графа, и вырожденность графа равна...
Панциклический граф — ориентированный или неориентированный граф, который содержит циклы всех возможных длин от трёх до числа вершин графа. Панциклические графы являются обобщением гамильтоновых графов, графов, которые имеют циклы максимальной возможной длины.
Структурная теорема графов — это главный результат в области теории графов. Результат устанавливает глубокую и фундаментальную связь между теорией миноров графов и топологическими вложениями. Теорема была сформулирована в семнадцати статьях из серии из 23 статей Нейла Робертсона и Пола Сеймура. Доказательство теоремы очень длинно и запутано. Каварабайаши и Мохар и Ловаш провели обзор теоремы в доступном для неспециалистов виде, описав теорему и её следствия.
Фактор-критический граф (или почти сочетаемый граф .) — это граф с n вершинами, в котором каждый подграф с n − 1 вершинами имеет совершенное паросочетание. (Совершенное паросочетание в графе — это подмножество рёбер со свойством, что каждая из вершин графа является конечной вершиной в точности одного ребра из подмножества.)
В теории графов рёберным графом L(G) неориентированного графа G называется граф L(G), представляющий соседство рёбер графа G.

Подробнее: Рёберный граф
В теории графов хорошо покрытый граф (иногда встречается название хорошо укрытый граф) — это неориентированный граф, в котором любое минимальное вершинное покрытие имеет один и тот же размер (как и любое другое минимальное вершинное покрытие). Хорошо покрытые графы определил и изучал Пламмер.
Построение Хайоша — это операция над графами, названная именем венгерского математика Дьёрдя Хайоша, которая может быть использована для построения любого критического графа или любого графа, хроматическое число которого не меньше некоторого заданного порога.
В теории графов граф называется хордальным, если каждый из его циклов, имеющих четыре ребра и более, имеет хорду (ребро, соединяющее две вершины цикла, но не являющееся его частью).
Экстремальная теория графов — это ветвь теории графов. Экстремальная теория графов изучает экстремальные (максимальные или минимальные) свойства графов, удовлетворяющих определённым условиям. Экстремальность может относиться к различным инвариантам графов, таким как порядок, размер или обхват. В более абстрактном смысле теория изучает, как глобальные свойства графа влияют на локальные подструктуры графа.
Древесность неориентированного графа — это минимальное число лесов, на которые можно разложить рёбра. Эквивалентно это является минимальным числом остовных деревьев, которые необходимы для покрытия рёбер графа.
Фактор графа G — это остовный подграф, то есть подграф, имеющий те же вершины, что и граф G. k-фактор графа — это остовный k-регулярный подграф, а k-факторизация разбивает рёбра графа на непересекающиеся k-факторы. Говорят, что граф G k-факторизуем, если он позволяет k-разбиение. В частности, множество рёбер 1-фактора — это совершенное паросочетание, а 1-разложение k-регулярного графа — это рёберная раскраска k цветами. 2-фактор — это набор циклов, которые покрывают все вершины графа.
Кососимметрический граф — это ориентированный граф, который изоморфен своему собственному транспонированному графу, графу, образованному путём обращения всех дуг, с изоморфизмом, который является инволюцией без неподвижных точек. Кососимметрические графы идентичны двойным покрытиям двунаправленных графов.
В теории графов медианным графом называется неориентированный граф, в котором любые три вершины a, b, и c имеют единственную медиану — вершину m(a,b,c), которая принадлежит кратчайшим путям между каждой парой вершин a, b и c.

Подробнее: Медианный граф
Кубический граф — граф, в котором все вершины имеют степень три. Другими словами, кубический граф является 3-регулярным. Кубические графы называются также тривалентными.
Гамильто́нов граф — математический объект теории графов. Представляет собой граф (набор точек и соединяющих их линий), который содержит гамильтонов цикл. При этом гамильтоновым циклом является такой цикл (замкнутый путь), который проходит через каждую вершину данного графа ровно по одному разу.
В теории графов дистанционно-наследуемый граф (или вполне сепарабельный граф) — это граф, в котором расстояния в любом связном порождённом подграфе те же самые, что и в исходном графе. Таким образом, любой порождённый подграф наследует расстояния большего графа.
Гипотеза Тэйта утверждает, что любой 3-связный планарный кубический граф имеет гамильтонов цикл, проходящий через все его вершины. Гипотезу высказал в 1884 году П.Г. Тэйт и опровёрг в 1946 году У.Т. Татт, построив контрпример с 25 гранями, 69 рёбрами и 46 вершинами. Позднее, в 1988, Холтон и Маккей нашли меньший по размеру контрпример с 21 гранями, 57 рёбрами и 38 вершинами и показали, что этот граф минимален.
Теорема Брукса — утверждение в теории графов, устанавливающее связь между максимальной степенью графа и его хроматическим числом. Согласно этой теореме вершины связного графа, в котором все вершины имеют не больше Δ соседей, можно раскрасить всего в Δ цветов, за исключением двух случаев — полных графов и циклов нечётной длины, для которых требуется Δ + 1 цветов.
Кографы открывались независимо несколькими авторами, начиная с 1970-х годов. Самые ранние упоминания можно найти у Янга, Лерчса, Зайнше и Самнера. Эти графы назывались D*-графами, наследственными графами Дейси (после работы Джеймса Дейси об ортомодулярных решётках. Смотрите работу Самнера) и графы с двумя потомками Барлета и Ури.
В теории графов псевдолес — это неориентированный граф , в котором любая связная компонента имеет максимум один цикл. То есть это система вершин и рёбер, соединяющих пары вершин, такая, что никакие два цикла не имеют общих вершин и не могут быть связаны путём. Псевдодерево — это связный псевдолес.
Говорят, что ориентированный граф апериодичен, если нет целого числа k > 1, делящего длину любого цикла графа. Эквивалентно, граф апериодичен, если наибольший общий делитель длин его циклов равен единице. Этот наибольший общий делитель для графа G называется периодом графа G.
В теории графов снарки «Цветы» образуют бесконечное семейство снарков, введённых Айзексом Руфусом в 1975 году.

Подробнее: Снарк «Цветок»
Симметричный граф (или транзитивный относительно дуг граф) — граф G, для любых двух пар смежных вершин которого u1—v1 и u2—v2 имеется автоморфизм...
Гипотеза Эрдёша — Фабера — Ловаса — это нерешённая проблема о раскраске графов, названная именами Пала Эрдёша, Ванса Фабера и Ласло Ловаса, которые сформулировали её в 1972. Гипотеза гласит...
Граф — абстрактный математический объект, представляющий собой множество вершин графа и набор рёбер, то есть соединений между парами вершин.
В теории графов число Хадвигера неориентированного графа G — это размер наибольшего полного графа, который может быть получен стягиванием рёбер графа G.
Рёберный граф гиперграфа — это граф, множество вершин которого является множеством гиперрёбер гиперграфа, а два гиперребра смежны, если они имеют непустое пересечение. Другими словами, рёберный граф гиперграфа — это граф пересечений семейства конечных множеств. Понятие является обобщением рёберного графа обычного графа.
Степень графа не следует путать с умножением графа на себя, который (в отличие от степени графа), в общем случае, имеет много больше вершин, чем исходный граф.
Теорема о совершенных графах Ловаша утверждает, что неориентированный граф является совершенным тогда и только тогда, когда его дополнение также совершенно. Это утверждение высказал в виде гипотезы Берж и утверждение называют иногда слабой теоремой о совершенных графах, чтобы не смешивать со строгой теоремой о совершенных графах, описывающей совершенные графы их запрещёнными порождёнными подграфами.
Жёсткость графа — мера связности графа: граф G t-жёсток при некотором вещественном t, если для любого целого k > 1 нельзя разбить граф G на k различных компонент связности путём удаления менее чем tk вершин. Например, граф 1-жёсток, если число компонент, образующихся при удалении вершин, всегда не превосходит числа удалённых вершин. Жёсткость графа — это максимальное t, для которого он t-жёсток. Число является конечным числом для всех конечных графов, за исключением полных графов, которые, по соглашению...
Перечислены связные 3-регулярные (кубические) простые графы с малым числом вершин.

Подробнее: Таблица простых кубических графов
Двойное покрытие циклами в теории графов — множество циклов в неориентированном графе, которое включает в себя каждое ребро ровно два раза. Например, любой полиэдральный граф образован из вершин и рёбер выпуклого многогранника, грани же при этом образуют двойное покрытие циклами: каждое ребро принадлежит ровно двум граням.
В теории графов свободный от t-биклик граф — это граф, в котором нет полных двудольных графов с 2t вершинами Kt,t в качестве подграфов. Семейство графов является свободным от биклик, если существует число t, такое, что все графы в семействе свободны от t-биклик. Семейства свободных от бициклов графов образуют одно из наиболее общих типов семейств разреженных графов. Они возникают в задачах инцидентности в комбинаторной геометрии, а также используются в теории параметрической сложности.
Эйлеров цикл — эйлеров путь, являющийся циклом, то есть замкнутый путь, проходящий через каждое ребро графа ровно по одному разу.
Интервальный граф — граф пересечений мультимножества интервалов на прямой. Имеет по одной вершине для каждого интервала в множестве и по ребру между каждой парой вершин, если соответствующие интервалы пересекаются.
Обхват в теории графов — длина наименьшего цикла, содержащегося в данном графе. Если граф не содержит циклов (то есть является ациклическим графом), его обхват по определению равен бесконечности.
Число пересечений графа — наименьшее число элементов в представлении данного графа как графа пересечений конечных множеств, или, эквивалентно, наименьшее число клик, необходимых для покрытия всех рёбер графа.
Плана́рный граф — граф, который может быть изображён на плоскости без пересечения рёбер. Иначе говоря, граф планарен, если он изоморфен некоторому плоскому графу, то есть графу, изображённому на плоскости так, что его вершины — это точки плоскости, а рёбра — непересекающиеся кривые на ней. Области, на которые граф разбивает плоскость, называются его гранями. Неограниченная часть плоскости — тоже грань, так называемая внешняя грань.
n-клетка — кубический граф обхвата n с наименьшим возможным числом вершин. Граф называется кубическим, если из каждой его вершины выходят 3 ребра. Обхват графа — это длина наименьшего цикла в нём.
Разметка графа в математике — это назначение меток, которые традиционно представляются целыми числами, рёбрами, вершинами, или рёбрам, и вершинам графа.
В теории графов циркулянтным графом называется неориентированный граф, имеющий циклическую группу симметрий, которая включает симметрию, переводящую любую вершину в любую другую вершину.

Подробнее: Циркулянтный граф
В теории графов петерсеново семейство графов — это набор из семи неориентированных графов, включающий граф Петерсена и полный граф K6. Петерсеново семейство названо именем датского математика Юлиуса Петерсена, поскольку в набор входит граф Петерсена.
а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я