Технологии энергетического использования биомассы

Юрий Степанович Почанин, 2021

Рассмотрены основные источники биомассы для применения в энергетических целях, которые можно разделить на первичные и вторичные (отходы). Первичные источники – биомасса растущих деревьев, некоторых многолетних трав, водорослей. Из биомассы производится три типа первичного топлива: 1. Твердое (уголь, торрефицированная биомасса (биоугль); 2. Газообразное (биогаз (СН4, СО2), генераторный газ (СО, Н2, СН4, СО2), синтез-газ (СО, Н2), заменитель природного газа (СН4); 3. Жидкое (этанол, биодизельное топливо, метанол, растительное масло, и пиролизное масло). Вторичная биомасса (отходы): отходы лесной, деревообрабатывающей и целлюлозно-бумажной промышленности и отходы животноводства. В настоящее время имеется большое количество технологий получения топливных брикетов и пеллет. В современной топочной технике применяются слоевой, вихревой, циклонный и факельный процессы сжигания топлива. Рассмотрены технологии двух основных типов биохимических процессов: анаэробное сбраживание и ферментация.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Технологии энергетического использования биомассы предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 1.

Общая

характеристика биомассы для

получения альтернативных топлив

Использование биомассы в энергетических целях — комплексный процесс, включающий выращивание и сбор биологических веществ, различные методы их подготовки и переработки в жидкие, газообразные и твердые топлива. Растительная биомасса представляет собой сложную смесь различных соединений. В расчете на сухое вещество в ней содержится 5—30% водорастворимых соединений (сахара, крахмал, мочевина, соли), 5—40% протеинов, 25—90% целлюлозы и гемицеллюлозы, 5—30% лигнина, 1—13% нерастворимых в воде неорганических соединений (золы). Растительная биомасса характеризуется высоким содержанием кислорода, достигающим 40%, и пренебрежимо малым содержанием такого нежелательного элемента, как сера.

Химический состав биомассы может различаться в зависимости от ее вида. Углеводородная фракция состоит из множества молекул сахаридов, соединенных между собой в длинные полимерные цепи. К наиболее важным категориям углеводородов можно отнести целлюлозу. Лигниновая фракция состоит из молекул несахаридного типа. Природа использует длинные полимерные молекулы целлюлозы для образования тканей, обеспечивающих прочность растений. Лигнин представляет собой"клей", который связывает молекулы целлюлозы между собой.

Основные источники биомассы для применения в энергетических целях можно разделить на первичные и вторичные (отходы).

Первичная биомасса является продуктом преобразования энергии солнечного излучения при фотосинтезе. Несмотря на весьма низкий КПД фотосинтеза (около 1%) ежегодно только на территории, занимаемой Россией, продуцируется до 15 млрд т биомассы (по сухому веществу), накапливающей энергию в виде органических веществ, эквивалентную примерно 8 млрд т условного топлива. Напомним, что современное мировое энергопотребление оценивается 12 млрд т у.т.

Первичные источники — биомасса растущих деревьев, кустарников, некоторых многолетних трав, водорослей. Ряд специалистов предлагает создавать и использовать специальные «энергетические плантации» быстро растущих в естественных условиях культур типа ивы, тополя, тростника, кукурузы, овса, сорго и т.п. Эта биомасса затем может быть применена непосредственно как топливо на тепловых электростанциях или в котельных. При условии, что на место использованных растений высаживается такое же количество новых, такой подход позволяет исключить накапливание С02 в атмосфере.

Растительное сырье разделяют на три поколения.

Биотопливо первого поколения производят из сахара, крахмала, растительного масла и животного жира, используя традиционные технологии. Основными источниками сырья являются семена или зерно. Например, семена подсолнечника прессуют для получения растительного масла, которое затем может быть использовано в биодизеле. Из пшеницы получают крахмал, после его сбраживания — биоэтанол. Вместе с тем из подсолнечника, пшеницы и других подобных культур можно произвести продукты питания, поэтому возникает конкуренция с жизненно важным для человечества сегментом рынка пищевым. Более того, производство биотоплива из подобных культур требует существенной финансовой поддержки государства и зачастую экономически невыгодно. Кроме того, многие экологи уверены, что при производстве данных видов биотоплива выбрасывается слишком много парниковых газов, что перекрывает экологическую выгоду от использования этих биотоплив.

Растительное сырье второго поколения. К биотопливам второго поколения относятся все виды жидкого и газообразного биотоплива, которые производятся не из пищевых культур: древесины, шелухи, и другой биомассы — органических отходов растительного и животного происхождения. Лигноцеллюлозный этанол получают из гидролизатов целлюлозы, используя: нагревание паром, ферменты и другие предобработки. С помощью брожения из данных сахаров можно получить этанол таким же путем, как и биоэтанол первого поколения. Побочным продуктом этого процесса является лигнин, которой может быть сожжен как не влияющий на концентрацию углекислого газа в атмосфере для выработки тепла и энергии. Также лигноцеллюлозный этанол сокращает выбросы парниковых газов на 90% по сравнению с ископаемой нефтью.

Растительное сырье третьего поколения. Совершенно новый вид — биотопливо третьего поколения или водорослевое топливо изготовляется из водорослей. Водоросли — одновременно дешевое и высокопродуктивное сырье для получения жидкого биотоплива. Эксперты утверждают, что с одного акра водорослей можно произвести в 30 раз больше биотоплива, чем с акра любого наземного растения. Более того, жидкое биотопливо из водорослей может без труда заменить продукты из нефти без качественных потерь для пользователей и с улучшением экологической составляющей. Эксперты утверждают, что как только жидкое биотопливо из водорослей станет экономически рентабельным для производства в большим масштабах (а сейчас к этому приближаются), то нефтяное топливо уже будет не конкурентно способным.

К отходам относят:

–отходы лесной, деревообрабатывающей и целлюлозно — бумажной промышленности, сельскохозяйственные отходы — остатки первичной биомассы (солома, шелуха зерновых культур, жмых масличных культур) и отходы животноводства, птицеводства (навоз, помет);

–промышленные жидкие отходы некоторых промышленных производств (пищевая, сахарная промышленность, виноделие и другие производства);

–муниципальные отходы городских очистных сооружений, городских свалок (подземные хранилища), твердые бытовые отходы и др.

Перед переработкой биомасса обычно проходит стадии подготовки, включающие измельчение, сушку и др. При переработке биомассы в моторные топлива наибольший интерес представляет газификация с получением синтез-газа (преобразуемого затем в метанол или углеводороды), а также ферментация с получением этанола.

Определенный интерес представляет использование в качестве моторного топлива для дизельных двигателей растительных масел. Масла, содержащиеся в семенах и плодах подсолнечника, хлопчатника, сои, клещевины, кокоса и ряда других масличных культур, представляют собой окисленные углеводороды, в основном триглицериды, близкие по теплоте сгорания к дизельному топливу. Масло выделяется из масличных культур путем выжимки и экстрагирования (трихлорэтиленом или гексаном) и очищается методами нейтрализации, вымораживания или фильтрования. Однако растительные масла нестабильны и имеют повышенную вязкость и коксуемость. Эти недостатки могут быть частично устранены, если применять их в смеси с дизельным топливом или перевести в метиловые и этиловые эфиры. Мировое производство растительных масел не превышает 35 млн. т в год, и все они практически целиком потребляются пищевой и химической промышленностью. Стоимость растительных масел в несколько раз превышает стоимость дизельного топлива, получаемого из нефти.

Таким образом, хотя сырьевых источников для производства биотоплив много, на практике круг их сужается вследствие географических, климатических, экономических и других факторов. Пищевые культуры исключаются из баланса, поскольку являются не менее дефицитными сегодня для производства продуктов питания. Сельскохозяйственные культуры — сезонное сырье и их выращивание требует больших земельных площадей.

Товарные продукты энергетической переработки биомассы представлены на рис.1.1.

Рис.1.1. Товарные продукты энергетической переработки биомассы

Из биомассы производится три типа первичного топлива:

1.Твердое (уголь, торрефицированная биомасса (биоугль);

2. Газообразное (биогаз (СН4, СО2), генераторный газ (СО, Н2, СН4, СО2), синтез-газ (СО, Н2), заменитель природного газа (СН4);

3.Жидкое (этанол, биодизельное топливо, метанол, растительное масло, и пиролизное масло).

К твердому топливу относят: дрова, а также новые его модификации: топливные гранулы и брикеты, в том числе так называемые пеллеты, представляющие собой прессованные изделия из древесных отходов (опилок, щепы, коры, некондиционной древесины, порубочных остатков при лесозаготовках), соломы, отходов сельского хозяйства (лузги подсолнечника, ореховой скорлупы, навоза, куриного помета) и другой биомассы.

К основным видам газообразного биотоплива относят биогаз — продукт анаэробного сбраживания органических отходов, представляющий собой смесь метана и углекислого газа, и

биоводород—водород, получаемый из биомассы термохимическими, биохимическими методами или биофотолизом.

Основные виды жидкого биотоплива, получаемые в ряде стран в промышленных масштабах, — это биоэтанол (этанол, получаемый в процессе переработки растительного сырья, в частности сахарного тростника или кукурузы), биометанол, биобутанол (С4Н9ОН — бутиловый спирт), диметиловый эфир (С2Н5ОН, производимый, например, из отходов целлюлозно-бумажного производства), а также биодизель — топливо на основе жиров животного, растительного и микробного происхождения, а также продуктов их этерификации).

Укрупненная картина по технологиям промышленного получения альтернативных топлив представлена в таблице 1.1,

Таблица 1.1. Технологии получения альтернативных топлив из биомассы

В тоже время типов установок очень много, поскольку конкретная технологическая схема зависит от вида биомассы, назначения, температурных условий и т.д.

К недостаткам биомассы как сырья для получения моторных топлив относятся рассредоточенность ее запасов и необходимость поддержания экологического равновесия. Сырая биомасса отличается высокой влажностью (30—90%) — Энергоплотность сырой биомассы колеблется в пределах 1—15 ГДж/м3, и даже после сушки ее теплота сгорания остается относительно низкой—16—24 ГДж/т.

Простейшая классификация разделяет исходное сырье на сухое (например, древесные отходы) и влажное (например, стоки животноводческой фермы). Для использования сухой биомассы наиболее эффективны термохимические технологии (прямое сжигание, газификация, пиролиз). Для влажной биомассы — биохимические технологии переработки с получением биогаза (анаэробное разложение органического сырья) или жидкого биотоплива (процессы спиртового брожения и др.).

Глава 2. Термохимические методы переработки биомассы

При термохимических методах биомасса превращается в более ценный энергоноситель или сжигается непосредственно. Различают три метода: сжигание, газификация и сжижение. При сжигании, связанная в биомассе, химическая энергия в процессе окисления превращается в тепло непосредственно. Термохимическое превращение включает прямое сгорание, газификацию и термическое разложение (пиролиз).

2.1

Энергетические характеристики различных видов топлива

и параметров процесса сжигания биомассы в топочных устройствах

Традиционными методами сжигания твердых топлив являются слоевое, с кипящим (псевдоожиженным) слоем, факельно-слоевое и факельное сжигание в котлах. При слоевом сжигании твердого топлива куски размером до нескольких сантиметров подаются на решетку, продуваемую воздухом. Достоинство слоевого сжигания — простота подготовки и подачи топлива. Недостаток метода — низкая паропроизводительность.

Технология факельного сжигания топлива активно развивалась в 50-е годы прошлого века. Помол топлива производится до размера частиц в несколько микрон, и пылевоздушная смесь подается в горелки. Основные достоинства факельного сжигания: возможность сжигания любого вида топлива с высоким КПД; высокая мощность котлоагрегатов; и др. Недостатки факельного сжигания: химический и механический недожег (в совокупности до 15-25%); сложный процесс подготовки топлива; высокая степень выбросов летучей золы, оксидов серы и азота. Как при слоевом, так и при пылеобразном сжигании топлива температуры в топке достигают 900-2000ОС и выше, а также предусмотрена дополнительная подача воздуха фурмами второго и третьего ярусов для более полного выгорания топлива.

Топки с кипящим (псевдоожиженным) слоем занимают промежуточное положение между слоевыми и факельными топками. Эта технология начала развиваться в 60-е годы прошлого века. Частицы топлива размером в несколько миллиметров подаются на решетку, на которую снизу подводится воздух. При определенной скорости воздуха слой взвешенных твердых частиц в восходящем потоке воздуха приобретает свойства жидкости (вязкость, текучесть, поверхностное натяжение). Достоинства кипящего слоя: высокий коэффициент теплопередачи; компактность топочного устройства; низкие температуры сгорания (около 850ОС), которые способствуют снижению выбросов оксидов азота; возможность эффективного серо улавливания с применением небольшого количества известняка в смеси с топливом.

Прямое сжигание древесины хорошо известно на бытовом уровне, однако эффективность бытовых печей довольно низка. Промышленные технологии энергетического использования древесины постоянно совершенствуются. Теплоэнергетические свойства топлива из древесно-растительной массы определяются рядом характеристик, таких как химический состав, теплота сгорания, влажность, твердость, содержание и состав золы.

Во многих европейских странах приоритет в развитии тепло — и электрогенерирующих мощностей отдается именно биомассе. Большое значение при этом имеет то обстоятельство, что древесина по химическому составу практически не содержит серы и азота, в продуктах ее сгорания, как правило, содержится мало золы, поэтому она является более экологичным топливом, чем нефть, уголь и даже природный газ, особенно когда при использовании энергетических плантаций исключается накопление С02 в атмосфере. Сравнительные характеристики различных видов топлива представлены в таблице 2.1, из которых видно, что каменный уголь, мазут, природный газ и торф выделяют большое количество углекислого газа и с экологической точки зрения менее предпочтительны по сравнению с древесным топливом и соломой. Как видно, соломенные пеллеты лишь незначительно уступают по качеству древесным, а по совокупности экологических показателей превосходят уголь, торф, дизтопливо и мазут.

Таблица 2.1. Сравнительные характеристики различных видов топлива

Основа биомассы — органические соединения углерода, которые в процессе соединения с кислородом при сгорании выделяют тепло. Особенность древесной биомассы как топлива состоит в том, что она в отличие от нефти, угля и природного газа имеет достаточно низкую теплотворную способность и высокую влажность. Присутствие влаги в топливе из биомассы часто ведет к значительным потерям выхода тепловой энергии, в связи с тем, что испарение воды требует значительных затрат энергии. В настоящее время биомасса преимущественно применяется в виде твердого топлива (дров, опилок, щепы, топливных гранул и пеллет), замещающего углеводородное сырье в котлах котельных и электростанций. Сравнительные энергетические характеристики различных видов биомассы представлены в таблице 2.2. Интенсивность горения топлива зависит от его химического состава, соотношения летучих газообразных компонентов и твердого углерода. В таблице 2.3 представлен химический состав соломы и древесной щепы. По составу и теплотворной способности древесина, солома и другие травянистые виды топлива (торф, костра и др.) в спрессованном и высушенном виде приблизительно одинаковы, у которых горючими составляющими, в основном, являются углерод и водород.

Таблица 2.2. Сравнительные энергетические характеристики различных видов биомассы

Примечание* Расчет по массе влажного сырья. ** Расчет по массе сухого сырья*** В виде сильно спрессованных брикетов**** Сушка проводилась на воздухе в течение 9 мес.

Индивидуальные отличия тех или иных видов биотоплива заключается в различном процентном содержании влаги, в способе получения, продолжительности хранения, подверженности естественной или искусственной сушке.

Торф, как ископаемое, от остальных видов топлива (древесина, травянистые растения) существенно отличается повышенным содержанием сернистых веществ и высокой зольностью. Характеристики и качество древесины, используемой в качестве топлива, варьируются в широких пределах в зависимости от вида древесины и типа предварительной обработки. Например, влажность топлива, подаваемого в топку, может составлять от 25 до 55 весовых % (влажная основа) (кора, отходы лесопильного производства) или менее 10 весовых % (гранулированное топливо, брикеты, отходы обработки сухой древесины).

Топливные свойства древесины определяются рядом характеристик, таких как теплота сгорания, химический состав (например, содержание таких элементов, как хлор (Cl), углерод (С), водород (Н), азот (N), водород (Н) и сера (S), влажность, твердость, количество летучих веществ, количество твердого углерода, содержание и состав золы, характеристики плавления золы, характеристики ошлакования золы, количество загрязняющих веществ, пыли, спор грибов.

Таблица 2.3. Химический состав соломы и древесной щепы

Топливную древесную щепу часто производят из различных пород деревьев с различным соотношением стволовой древесины, коры, листвы, ветвей, почек и даже шишек, содержание которых изменяет свойства топлива.

Основными компонентами клеток древесины являются целлюлоза, гемицеллюлоза и лигнин, которые составляют 99% массы древесного материала. Целлюлозу и гемицеллюлозу образуют длинные цепи углеводородов (таких как глюкоза), лигнин же является осложненным компонентом полимерных фенольных смол. Лигнин тесно связан с гемицеллюлозой, так как он действует как склеивающий агент, склеивая пучки цепей целлюлозы и растительные ткани. Таким образом, лигнин придает растению механическую прочность. Он богат углеродом и водородом, которые являются основными элементами производства теплоты. Поэтому лигнин обладает более высокой теплотворной способностью по сравнению с углеводородами. Древесина и кора также содержат так называемые экстрактивные вещества, такие как терпены, жиры и фенолы. Многие из них растворимы в органических растворителях (гексане, ацетоне, этаноле) и горячей воде. Древесина содержит относительно малое количество экстрактивных веществ по сравнению с количеством экстрактивных веществ, содержащихся в коре и листве. Приблизительно половина массы свежесрубленного дерева состоит из воды. Вторая половина представляет собой сухое древесное вещество, содержащее 85% летучих веществ, 14,5% твердого углерода и 0,5% золы. В безводной древесине общее содержание углеродного компонента составляет приблизительно 50%. При сжигании древесины составляющие ее компоненты превращаются в водяной пар (H2O), двуокись углерода (CO2), окислы азота (NOx), окись серы (SO2) и золу. Древесина практически не содержит серы, максимальное содержание серы в древесине составляет 0,05%. Различные породы деревьев имеют различное содержание азота, которое составляет в среднем 0,75%. Например щепа, полученная из так называемой азотфиксирующей древесины таких деревьев, как ольха, содержит более чем в два раза больше азота, чем щепа, полученная из древесины хвойных пород, таких как сосна и ель. Древесная кора также содержит больше азота, чем древесный материал. Теплотворные характеристики различных типов топлива зависят от соотношения содержащихся в них элементов. Углерод и водород увеличивают теплоту сгорания, в то время как высокое содержание кислорода в древесине ее уменьшают. По сравнению с другими видами топлива древесина имеет довольно низкое содержание углерода (около 50% сухого веса) и высокое содержание кислорода (около 40%), и, следовательно, довольно низкую теплоту сгорания на единицу сухого веса. Сухие древесина и кора также характеризуются очень низким уровнем зольности при сгорании, так, один плотный кубический метр древесного топлива дает только 3-5 кг чистой золы. Однако на практике зола часто содержит некоторое количество песка и продуктов неполного сгорания углерода. Горючие вещества, содержащиеся в твердом топливе можно разделить на две группы: летучие вещества и такие горючие компоненты, как твердый углерод. Обычно древесина имеет высокое содержание летучих веществ и низкое содержание твердого углерода. Восемьдесят процентов энергии древесина генерирует за счет сгорания летучих веществ или газов и двадцать процентов — в результате сгорания твердого углерода (раскаленные угли). Так как из-за большого количества летучих веществ, содержащихся в древесине, при ее горении образуются высокие языки пламени, для сгорания топлива требуется значительное пространство. Древесная кора и торф имеют аналогичные характеристики горения..

Перспективным источником древесного биосырья являются быстрорастущие насаждения, прежде всего, ива, тополь (одна тонна ивовой щепы (сырой массы) дает 8,9 ГДж, то есть примерно столько, сколько и одна тонна торфяных брикетов (для сравнения, 1 тонна мазута — 38,5 ГДж).

Для определения топливных свойств древесины используются два вида анализа

Технический анализ представляет собой определение с применением предписанных методов содержания влаги (ISO 331), содержания летучих веществ (ISO 562), зольности (ISO 1171) и содержания связанного углерода (ISO 609) в топливе.

Элементарный анализ представляет собой определение с применением предписанных методов элементарного состава топлива. Количество летучих веществ определяется с применением стандартных методов.

Теплотворная способность определяется высшей теплотой сгорания (высшая теплотворная способность (ВТС) или низшей теплотой сгорания (низшая теплотворная способность (НТС). Величина низшей или высшей теплоты сгорания может определяться на единицу сухого топлива (как правило, кг или м3) или на единицу топлива с учетом его влажности. Кроме влаги, содержащейся в топливе, влага также образуется при сгорании водорода. Уровень влажности определяет различие между высокой и низкой теплотой сгорания. При определении значения ВТС допускают, что влага конденсируется в воду, а при вычислении значения НТС предполагается, что влага находится в виде насыщенного пара. Теплотворная способность обычно выражается в МДж/кг. Значение ВТС топливной биомассы обычно составляет от 18 до 21 МДж/кг, что соответствует ВТС торфа, но значительно ниже, чем ВТС нефти.

Структурными элементами (по данным элементарного анализа) органической части древесины являются углерод (45-50%), кислород (40-45%), водород (4,5-6%) и азот (0,3-3.5%). Содержание золы обычно составляет несколько процентов или доли процента (0,3% в ели или березе без коры, 1,6% в березовой коре и 3,4% в еловой коре). Очевидным преимуществом древесной биомассы перед ископаемым топливом является низкое содержание в ней серы.

2.2. Особенности процесса сжигания биомассы в топочных устройствах

Процесс сжигания местных видов топлива при смешивании с воздухом состоит из нескольких этапов. На рис. 2.1. представлена диаграмма горения древесины и выделения тепла.

Рис.2.1. Диаграмма горения топлива и выделения тепла

Как видно из рис.2.1, на первом этапе требуется дополнительное тепло для испарения влаги, высушивания и воспламенения топлива. При температуре свыше 100ºС начинается процесс пиролиза, при котором летучие вещества углеводородных соединений начинают испаряться.

В интервале 200–300ºС происходит воспламенение твердого топлива. Сухая солома воспламеняется при температуре около 200ºС, сухой торф — при температуре 225 — 280ºС, сухая древесина — 220 — 300ºС. При температуре 500 — 600ºС начинается процесс горения летучих компонентов, содержание которых в горючем веществе составляет около 75%. В интервале 800 — 900ºС происходит сгорание твердого углерода и смолы, образующие при этом дымогарные газы дожигаются в камере с подачей воздуха (газогенераторный процесс). При этом дополнительное выделение тепла повышают температуру газов до 1000 — 1100ºС. В полученной газо-воздушной смеси сгорают токсичные образования, тяжелые соединения и частицы сажи.

Процесс горения и, соответственно, уровень выбросов и энергетический КПД зависят от большого числа переменных. Это следует учитывать при проектировании и эксплуатации любых установок, работающих на биомассе.

В зависимости от технологии сгорание топлива может быть полным и неполным. При полном сгорании происходит выброс двуокиси углерода, оксидов азота и серы, хлористого водорода, частиц и тяжелых металлов. При неполном сгорании топлива образовываются и происходят выбросы моноокиси углерода, несгоревшие углеводороды, частицы, полихлорированные диоксины и фураны, аммиак.

Рассмотрим ряд факторов, влияющих на процесс сгорания топлива.

1.Механизмы теплопередачи. Теплообмен может осуществляться посредством передачи, конвекции и излучения теплоты. Для обеспечения низкого уровня выбросов при неполном сгорании топлива необходимо минимизировать потери тепла в топочной камере посредством оптимизации переменных характеристик, оказывающих прямое воздействие на механизмы теплопередачи. Также для получения высокого теплового КПД необходимо обеспечить эффективный теплообмен между топочной камерой и впуском дымовой трубы. Эффективный теплообмен необходим для получения высокого теплового КПД. Управление активным процессом теплообмена осуществляется с помощью систем управления, регулирующие переменные параметры технологического процесса, такие, например, как количество воды, протекающее через котел.

2.Аккумулирование теплоты. Значительное количество теплоты аккумулируется в стенках топочной камеры, забирающих теплоту из объема топочной камеры на первоначальном этапе процесса горения. Это явление играет особенно важную роль при сжигании биомассы в установках малой мощности. Аккумулированное тепло, передаваемое в окружающую среду со значительной задержкой во времени, используется в печах с аккумуляцией тепла (теплоаккумулирующие печи). Однако на начальном этапе процесса горения может наблюдаться высокий уровень выбросов от неполного сгорания.

3.Изоляция. Передача тепла происходит через стенки топочной камеры. Улучшить изоляцию топочной камеры можно посредством увеличения толщины изоляционного слоя или использования материала с лучшими изоляционными характеристиками. При этом следует определить целесообразность применения изоляции, которая занимает часть свободного пространства рабочего помещения и требует дополнительных затрат.

4.Предварительный подогрев воздуха. Температура топочной камеры может быть значительно повышена путем предварительного подогрева воздуха. Подаваемый воздух может быть предварительно подогрет посредством теплообмена с топочным газом после выпуска топочного газа из топочной камеры. Примером может служить предварительный подогрев вторичного воздуха за счет использования теплоты топливного слоя.

5.Коэффициент избытка воздуха (отношение фактически затраченное на сжигание топлива воздуха к теоретически необходимому). Любое топливо требует использования соответствующего количества воздуха (кислорода) с тем, чтобы обеспечить его стехиометрическое преобразование, т.е. коэффициент избытка воздуха λ (лямбда) должен быть равен 1. Стехиометрическое преобразование топлива происходит, когда используется точное количество кислорода, необходимое для преобразования всего топлива при идеальных условиях. В применениях со сжиганием биомассы коэффициент избытка воздуха должен значительно превышать 1 с тем, чтобы обеспечить эффективное смешение подаваемого воздуха и топливного газа. В установках малой мощности коэффициент избытка воздуха должен превышать 1,5. Это означает, что в топке будет иметься общее избыточное количество воздуха. Поэтому в таких применениях первостепенное значение имеет оптимальное смешение воздуха с топливом, позволяющее использовать более низкие коэффициенты избытка воздуха и повышать температуру горения. Эффективное смешение воздуха с топливом при очень низком избытке воздуха обеспечивается в установках, имеющих оптимальную конструкцию устройств впуска воздуха и современные оптимизированные системы управления технологическими процессами.

6.Вид топлива. Состав топлива оказывает значительное воздействие на величину ВТС и уровень выбросов (в основном, при полном сгорании) и играет важную роль в процессах озоления, вызывающих различные технологические проблемы. В установках периодического действия состав топлива постоянно изменяется в зависимости от степени сгорания топлива. Как правило, по сравнению с ископаемым углем биомасса характеризуется высоким содержанием летучих компонентов и малым количеством угля, образующихся при сжигании топлива, что делает биомассу топливом с высокой реактивной способностью. Однако различные виды топливной биомассы имеют различное содержание летучих компонентов, что оказывает соответствующее воздействие на тепловые характеристики топлива. Тепловые характеристики топлива также зависят от типов химических структур и связей в различных видах топливной биомассы, что определяет значительные различия в выходе летучих в зависимости от температуры. Различные виды топливной биомассы в значительной степени отличаются по плотности топливного материала; также имеются значительные различия между твердыми и мягкими породами деревьев. Древесина твердых пород, например, березы, имеет более высокую плотность, что оказывает воздействие на значение отношения объема камеры к потребляемой энергии и характеристики горения топлива. Степень пористости топлива оказывает воздействие на характеристики реактивности (потеря массы в единицу времени) топлива и, следовательно, на выход летучих. Размеры топлива являются важной переменной характеристикой при сжигании биомассы на установках большой мощности, в особенности, в случаях, когда происходит увлечение частиц топлива топочным газом, как, например, при сжигании распыленного топлива. Более мелкие частицы топлива требуют более короткого времени пребывания в топочной камере. Важное значение имеет также степень однородности топлива: увеличение однородности топлива, степень которой повышается с уменьшением размеров частиц топлива, повышает эффективность управления технологическим процессом. Наконец, реактивная способность топлива также зависит от площади активной поверхности

7.Влажность. В установках периодического действия имеется дополнительный осложняющий технологический процесс фактор: содержание влаги непрерывно изменяется в зависимости от степени выгорания топлива. Влага высвобождается на этапе выхода летучих веществ, и содержание влаги уменьшается в зависимости от степени выгорания топлива. Поэтому негативное воздействие уровня влажности на процесс горения может быть значительным на первых этапах фазы выхода летучих веществ, что может приводить к повышению уровня выбросов от неполного сгорания топлива.

8.Температура горения. Влажность и состав топлива непрерывно изменяются в зависимости от степени выгорания топлива. При этом изменяется адиабатическая температура горения. Адиабатическая температура горения повышается по мере сгорания топлива при постоянном коэффициенте избытка воздуха. Однако, так как уголь обладает значительно меньшей реактивной способностью, чем фракция летучих веществ, скорость сгорания топлива и потребность в кислороде будут значительно ниже. Поскольку обычно сложно эффективно регулировать количество подаваемого воздуха на этапе сгорания углей, в особенности, если используется естественная тяга, то коэффициент избытка воздуха будет довольно высоким. Это обстоятельство в сочетании с со значительно более низкой скоростью сгорания топлива может привести к падению температуры в топочной камере ниже уровня, необходимого для полного сгорания топлива.

9.Конструкция. Конструкция установки для сжигания топлива оказывает значительное воздействие на процесс горения и управления технологическим процессом. Характеристики используемых материалов, такие как теплотворная способность, плотность, толщина, изоляционная способность, поверхностные характеристики, оказывают воздействие на значение температуры в топочной камере.

10.Ступенчатая подача воздуха. Применение системы ступенчатой подачи воздуха обеспечивает одновременное снижение уровня выбросов от неполного сгорания и выбросов NOx в результате разделения этапов выхода летучих компонентов и сгорания газовой фазы. Это повышает эффективность смешения топливного газа с вторичным воздухом горения, что снижает общий коэффициенты избытка воздуха и повышает температуру горения. Таким образом, уровень выбросов от неполного сгорания снижается в результате повышения температуры.

11.Подача и распределение топлива. Работа любых установок для сжигания топлива периодического действия будет более эффективной при повышении степени непрерывности процесса горения, при котором снижаются отрицательные эффекты начального этапа горения и этапа сгорания углей. Распределение топлива в топочной камере, вызывающее уменьшение или увеличение площади активной поверхности, оказывает воздействие на процесс горения, соответственно понижая или повышая степень реактивности.

12.Управление. Применение эффективных методов управления технологическими процессами позволяет минимизировать уровень выбросов и оптимизировать тепловой КПД. Разработаны различные методы управления процессом сжигания топлива. Эти методы могут основываться на измерениях параметров определенных соединений топочного газа или значений температуры, данные о которых передаются на контроллер процесса горения в объеме, необходимом для регулировки процесса горения, например посредством изменения количества и распределения воздуха, подаваемого в топочную камеру.

Одним из наиболее важных аспектов эксплуатации установок на биомассе большой мощности являются также проблемы, связанные с использованием низкокачественной дешевой топливной биомассы, которое часто приводит к образованию отложений и коррозии теплообменников и пароперегревателей и к дополнительным выбросам вредных веществ.

2.3. Подготовка биомассы для сжигания

Важнейшими факторами, существенно влияющими на эффективность топочных процессов, являются влажность, неоднородность и непостоянство физико-механических характеристик первичных видов биомассы. Влагосодержание биомассы существенно влияет на механизмы и эффективность процессов горения и теплообмена в энергогенерирующих установках. Устойчивое, стабильное горение происходит при влажности, например топливной щепы, до 40. — 45% Горение возможно также и при влажности щепы до 56.-.57% с коэффициентом избытка воздуха от 2 до 4.-.5, но оно неустойчиво. В отдельных дорогостоящих топочных устройствах можно сжигать щепу с предельно допустимой влажностью 60% и даже 65% или использовать дополнительные источники тепла, сжигая другое топливо (газовая, мазутная подсветка и т.д.). Такие технологии целесообразно использовать для утилизации древесных отходов, а не для производства тепловой энергии.

Для эффективного использования древесного топлива необходимо должным образом подготовить исходную топливную древесину: высушить, гомогенизировать, т.е. придать ей стабильные физико-химические и механические параметры и свойства. Это позволит в 2-3 раза повысить удельную теплотворную способность древесины, оптимизировать топочные процессы, увеличить КПД теплогенерирующего оборудования, его эффективность (в 1,3-2,8 раза), а также снизить стоимость оборудования и затраты на его эксплуатацию.

К подготовке местных видов топлива для сжигания относятся следующие процедуры: изменение уровня влажности топлива, изменение размеров частиц топлива, выбор соответствующего оборудования для сжигания топлива.

Большое влияние на топливные свойства влияет влажность. Около 50-60% массы свежесрубленного дерева, 25-30% массы соломы и 25% торфа составляет вода. При сжигании местных видов топлива часть тепловой энергии уходит на испарение влаги. Высокая влажность топлива затрудняет получение достаточно высокой температуры в топочной камере. Часто требуется получить температуру более 850ºС с тем, чтобы обеспечить достаточно низкий уровень выбросов СО. В общем, если не имеется дешевого отбросного тепла, отбираемого из другого процесса, применение отдельной системы искусственной сушки делает процесс слишком дорогостоящим и экономически невыгодным. Подсушивание биомассы в течении нескольких месяцев при открытом хранении с использованием естественной конвекции в большинстве случаев является экономически невыгодным, так как потери от биологического разложения (1-2 весовых % в месяц) превышают полученное повышение КПД.

Размер топливных частиц играет важную роль при выборе технологии сжигания топлива и может варьироваться от больших тюков (поленьев) до мелких опилок. Измельчитель или рубительная машина могут использоваться для уменьшения размера крупных частиц, таким образом получают более однородный состав частиц, что позволяет использовать большее число технологий. Однако измельчение биомассы является целесообразным только в случае, если выгоды от выполнения этой операции превосходят дополнительные инвестиции и затраты на энергию. Сущность технологии заключается в измельчении древесины с последующей ее термодеструкцией в среде перегретого пара, в результате чего масса приобретает вяжущие свойства, с последующим прессованием термообработанной массы в брикеты. Технические характеристики получаемых брикетов — теплота сгорания — 19-26 Мдж/кг, влажность — 10 масс.%, зольность — 0.5-4.0 масс.%, плотность — 1050-1200 кг/м3

В настоящее время имеется большое количество технологий получения топливных брикетов и пеллет. В отличие от большинства традиционных видов топлива, пеллеты и брикеты не наносят вреда экологии. Эти прессованные материалы удобны в хранении, высококалорийны и обладают небольшой зольностью в сравнении с обычными дровами. Кроме того, высокая плотность исключает накопление влаги и препятствует гниению материала.

Топливные брикеты и пеллеты, по существу, являются разновидностями одного и того же твердого топлива на основе одинакового сырья. Принципиальное отличие — способ производства продукта. Процесс изготовления пеллет трудоемкий и длительный, в отличие от производства брикетов. Это и обуславливает высокую стоимость пеллет.

Второе немаловажное различие — возможность применения в отопительных системах и приборах: если брикеты можно использовать повсеместно, в любых котлах и печах, то для использования пеллет потребуется приобрести специальную горелку или гранульный котел.

2.3.1. Изготовление топливных пеллет

Пеллеты применяются в теплоэнергетике, отоплении жилых и производственных помещений, и в последнее время набирает популярность среди жителей частных домов. По теплотворной способности 2,5 кг пеллет равен 1л жидкого топлива. При производстве топливных пеллет в рассмотрение идет ряд характеристик — зольность, влажность, теплота сгорания, плотность и другие. Часть этих параметров зависит напрямую от исходного сырья (например, зольность и теплота сгорания). Но некоторые характеристики зависят также от соблюдения технологии изготовления пеллет и качества оборудования. Причем, если свойства сырья влияют лишь на уровень качества пеллет, то оборудование должно обеспечить ряд принципиальных физических свойств гранулы, таких как плотность, длину и влажность. При несоблюдении данных требований Вы не получите продукт, востребованный на рынке.

Основными материалами для изготовления топливных гранул являются: опилки, щепа, кора, горбыль хвойных и лиственных (оптимальный вариант) пород древесины; торф; лузга подсолнечника (наиболее распространенное решение), рапс (оптимальный вариант), солома различных зерновых культур, кукуруза, шелуха, жмых и многое другое. Некоторые виды пеллет представлены на рис. 2.2.

Рис. 2.2. Некоторые виды пеллет

Гранулирование макулатуры — довольно новое и перспективное производство, поскольку данный тип сырья не требует дорогостоящих сушильных комплексов. Гранулы из бумаги и картона дают большое количество тепла и имеют мизерный процент несгораемых остатков.

Пеллеты представляют собой прессованные гранулы цилиндрической формы. Прессуются они под действием давления и высокой температуры. В качестве базового связующего вещества выступает вещество растительного происхождения — лигнин, природный полимер, содержащийся практически в любом растении, способный пластифицироваться при грануляции под воздействием достаточно высокой рабочей температуры.

Древесные пеллеты делятся на бытовые и промышленные. Бытовые пеллеты изготавливают из свежих опилок и щепок. В промышленных гранулах присутствуют и другие примеси. Они бывают светлыми, коричневатыми, либо серыми. Более светлый цвет свидетельствует о высоком качестве гранул (светлый — признак применения исключительно хорошей древесины без коры и чистых опилок. У этого вида пеллет самая низкая зольность, так как они не содержат пыль и кору дерева, (до 0,5 %).

Пеллеты из отходов сельскохозяйственной деятельности (солома, шелуха подсолнуха, кукурузные и гречишные отходы) мало чем отличаются по теплотворной способности от древесных пеллет. У растительных пеллетов зольность выше (до 3%), чем у древесных, котел нужно будет чистить чаще, поэтому они больше используются в промышленных целях

Торфяные пеллеты также пользуются популярностью среди промышленных предприятий, так как обладают хорошими калорийными, экономическими и экологическими качествами, но среди частных потребителей они не получили распространения ввиду своей повышенной зольности.

Величина гранулы — обычно 6, 8, 10 мм в диаметре и от 10 до 50 мм в длине. На европейском оборудовании выпускают продукцию с сечением 6 мм, отечественная техника может выпускать пеллеты диаметром 8 и даже 10 мм. В плане размера следует руководствоваться исключительно рекомендациями для вашего котла, поскольку именно на такую крупность рассчитана его автоматика. Если вы используете гранулы крупнее, чем задано в инструкции, механизмы котла будут испытывать повышенную нагрузку.

Зольность биотоплива — это содержание минеральных примесей в его общей массе. В самой древесине содержание минералов незначительно — до 1 %, в коре их больше — до 3%. Основной объем минеральных вкраплений в пеллетном сырье — это песок и земля, они попадают в него, когда бревна, щепа и др. материалы подбираются с грунтовой поверхности и не очищаются. Данные скопления (шлак) приводят появлению осадков и наслоений после сгорания топлива.

Основным нормативным документом, предопределяющим производство пеллет, является стандарт Европейского Союза EN 14961-2, принятый в январе 2011 года, на его основании выдается международный сертификат качества EN Plus. Выделяют три класса гранулированного топлива:

1.EN Plus-A1 — продукт премиального качества для использования в домашних отопительных котлах. Зольность до 0,5%, теплотворная способность — 18,0 Мдж/кг.

2.EN Plus-A2 — стандартные пеллеты, хорошо подходят для домашнего использования. Зольность до 1%, теплотворная способность — 18,0 Мдж /кг.

3.EN-B — топливо для промышленных котлов. Допускается зольность до 3%, теплотворная способность — 15,0 МДж/кг).

В России пеллетное производство ориентировано преимущественно на внутренний рынок, продукцию пеллетного производства можно сертифицировать по ГОСТу.

ГОСТ 55110-2012"Биотопливо твердое. Определение механической прочности пеллет и брикет. Часть 1 пеллеты".

ГОСТ 55553-2013"Биотопливо твердое. Подтверждение качества топлива. Часть 2. Древесные пеллеты для непромышленного использования".

Основными требованиями к качеству топливных пеллет являются:

–гранула должна быть ровной и гладкой с отсутствием трещин в гранулах, без коробления и осыпания;

–гранула должна быть плотно спрессована;

–желательно чтобы гранулы были одного размера;

–отсутствие или наименьшее содержание примесей (пыль, песок) в готовой продукции, которые ухудшают качество пеллет;

–на пеллетах не должно быть грибка либо плесени, не должно быть никаких химикатов.

Требований к сырью, которые необходимо соблюдать при производстве пеллет:

–сырье не должно иметь никаких примесей (камней, пыли, песка, металлического мусора, листвы);

–в нем должно содержаться как можно больше природных склеивающих веществ (лингина, смол и других клейких веществ), что ускоряет процесс изготовления и качество готовой продукции;

–сырьевые материалы не должны быть очень влажными, хотя это исправляется во время сушки, но при этом замедляет производственный процесс.

Основными технологическими этапами производства топливных пеллетов являются.

1.Крупное дробление сырья. На этом этапе измельчаются крупные сырьевые материалы до нужных размеров (длина до 25 мм, диаметр до 2-4 мм). Это нужно для облегчения просушки. Осуществляется этот процесс с помощью дробилки. Дробление может производиться несколько раз, если с первого раза не удалось достичь необходимой фракции материала. Далее по скребковому транспортеру измельченное сырье поступает в смеситель, а затем в сушильный барабан.

2.Сушка обработанного сырья. Этот этап протекает в сушильном барабане, рис.2.3. В него из котла по рукавам подается горячий воздух, который высушивает сырьевой материал. Он должен иметь влажность не менее 8%, так как в грануляторе очень сухое сырье будет хуже склеиваться, но и не более 12 %, так как пеллеты будут хуже гореть в котле. При сушке отработанный воздух под действием разряжения дымососа захватывается вместе с мелкими фракциями, которые осаждаются вниз в циклон, а отработанный воздух удаляется в атмосферу.

Рис.2.3. Сушильный барабан

При этом часть мельчайших фракций по воздушным транспортерам попадает в котел.

3. Мелкое дробление. Перед гранулированием сырье должно иметь фракцию 1-3 мм, рис.2.4, поэтому непосредственно перед подачей в прессующий узел сырье проходит через молотковую дробилку. Ее наличие в технологической линии — обязательное условие.

Рис.2.4. Фракция измельченной щепы

Осуществляется мелкое дробление с помощью дробильной мельницы. В нее сырье подается из циклона. В дробилке сырьевой материал измельчается до состояния муки, а потом эта мука по воздушным транспортерам попадает в циклоны (1-й циклон для первичного отделения муки из древесины от воздуха, 2-й циклон — для вторичного, заключительного отделения). Далее после отделения воздуха, древесная мука подается на прямой шнековый транспортер, а затем на наклонный шнековый транспортер в бункер пресс-гранулятора, в котором установлен смеситель. 4.Корректирование влажности Данный процесс будет проходить в специальном устройстве — смесителе. При необходимости он по своим каналам будет подавать пар или воду и на выходе получится древесная пыль с нужной влажностью.

5. Грануляция и прессование. После того как влажность откорректировалась в смесителе, сырье поступает в пресс-гранулятор, рис.2.5, где под давлением, около 300 атм, и под влиянием высокой температуры формируются топливные гранулы. Сырье продавливается через специальную матрицу, проходя через которую, склеивается в гранулы цилиндрической формы. В грануляторе установлен неподвижный нож, который режет выдавливаемый из матрицы готовый материал в гранулы нужного размера. Далее гранулы подаются в охладитель.

Рис.2.5. Пресс-гранулятор

6.Охлаждение пеллет. Формирование гранул сопровождается повышенными температурами. При выходе из прессующего узла температура гранул 70 — 110°С. Поэтому их необходимо охладить до температуры окружающей среды, а также отделить не сгранулированную часть. Для этого используются колонны и блоки охлаждения. Готовые гранулы, поступившие в охладительную колонку, продуваются воздухом из вентилятора и охлаждаются до нужной температуры. Кроме того, воздухом захватываются частицы сырья, которые не использованы при гранулировании и направляются в циклон. После охлаждения гранулы отправляются на расфасовку.

7. Расфасовывание готовой продукции. Из охладительной колонки по ленточному либо скребковому транспортеру готовые гранулы поступают в бункер для готовой продукции. Бункер оборудован весами, чтобы точно знать массу мешка, упакованного пеллетами. Здесь осуществляется упаковка в мешки (10 кг, 25 кг, 50 кг), а также и в большие мешки (250 кг, 500 кг, 1000 кг).

Промышленное производство пеллет имеет множество нюансов, связанных со свойствами сырья. В следствие этого очень важно иметь комплексный технический проект линии, приспособленной под определенный материал. Но при этом все технологии имеют общую концепцию. На рис.2.6. представлена схема линии на базе гранулятора ОГМ-1,5, который предназначен для производства гранул из древесных опилок, торфа, соломы, макулатуры.

Рис. 2.6. Схема линии на базе гранулятора ОГМ-1,5

Основным оборудованием оборудованием для производства топливных пеллет являются: ленточный или скребковый транспортер; дымосос; вентилятор для удаления отсева; охладитель; пресс-гранулятор; сушильный барабан; механизм для погрузки обработанного сырья в сушилку; котел (газовый либо на опилках); смеситель; мельница молотковая; дробилка (барабанная либо дисковая); контейнер для сырья с транспортером; циклоны; воздушные рукава; шнековые транспортеры; воздухотранспортеры; весы для больших упаковок (500, 1000 кг); станок для упаковывания; бункер для готовых пеллет.

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Технологии энергетического использования биомассы предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я