Конструкции и монтаж фотоэлектрических модулей

Юрий Степанович Почанин, 2021

В книге описаны материалы трех поколений фотоэлементов и рассмотрены принципы работы фотоэлектрических преобразователей на их основе. Показана эффективность сбора солнечной энергии с помощью фотоэлементов. Описаны классы качества фотоэлектрических элементов, стандарты тестирования, методы и экология их производства. Подробно рассмотрены основные компоненты фотоэлектрических систем с их выбором: конструкции солнечных модулей, контроллеры заряда солнечных батарей, типы, применяемых аккумуляторов и инверторов. Представлены основные схемы построения фотоэлектрических систем. Вкратце рассмотрены типы солнечных электростанций. Большая глава посвящена монтажу фотоэлектрических установок. В конце работы описаны варианты применения фотоэлектрических систем. Книга рекомендуется для учащихся средних и студентов высших заведений.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Конструкции и монтаж фотоэлектрических модулей предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 2. Основные виды солнечных батарей

Фотовольтаика—метод выработки электрической энергии путем использования фоточувствительных элементов для преобразования солнечной энергии в электричество. В солнечной энергетике для получения электрической энергии широко применяют фотоэлектрические преобразователи (ФЭП). Несколько соединенных между собой преобразователей образуют солнечную батарею.

2.1. Принцип работы

фотоэлектрических преобразователей

В основе работы фотоэлектрического преобразователя лежит фотоэффект—преобразование энергии электромагнитного излучения в электрическую энергию. Сущность фотоэффекта состоит в том, что электроны, содержащиеся в каком-либо веществе (твердом, жидком или газообразном), под действием фотонов падающего излучения приобретают энергию, позволяющую им изменять свое энергетическое состояние. Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи, поскольку это прямой, одноступенчатый переход энергии. К полупроводниковым относят материалы, у которых ширина запрещенной зоны (энергия, необходимая для перехода электрона из зоны валентности в зону проводимости) характеризуется значениями от 0 до 6 эВ. При создании гетероструктур может использоваться два, три и более полупроводника, которые компонуются определенным образом. По классификации полупроводниковых материалов иногда особо выделяют узкозонные полупроводники (ширина запрещенной зоны менее 0,3 эВ) и широкозонные полупроводники (ширина запрещенной зоны более 2 эВ.

Электронно-дырочный p-n переход–одно из основополагающих эффектов в твердотельной микроэлектронике. Р-n переход — ключевой элемент, необходимый для создания кремниевых кристаллических фотоэлектрических (фотогальванических) преобразователей.

Полупроводники по типу проводимости классифицируют:

–р-типа, в которых основной носитель заряда—дырки, общепринятое название—дырочная проводимость;

–n — типа, в которых основной носитель заряда—электроны проводимости, отсюда и название—электронная проводимость.

При этом, чтобы получить p-n переход, на пластине с одним типом проводимости необходимо создать слой с проводимостью другого типа.

Одно из важнейших свойств p-n перехода — это его способность пропускать носители тока исключительно в одном заданном направлении, другими словами — выполнять роль энергетического барьера. Поэтому именно этот эффект использован в солнечных элементах для получения электрического тока. Солнечное излучение, попадая на поверхность элемента, провоцирует генерирование в объеме полупроводника свободных разнополярных носителей заряда — положительно заряженные дырки (р) и отрицательно — электроны (n). Выступая в качестве барьера, p-n переход сортирует их, фильтруя на «свою» половину только определенный тин носителей заряда. В результате вместо хаотического движения в объеме полупроводника заряженные частицы, упорядоченно преодолевая p-n переход, оказываются по разным сторонам барьера, создавая напряжение на нагрузке, которая подключена к солнечному элементу.

Принцип работы солнечного модуля (солнечной панели, солнечной батареи), основан на физических свойствах полупроводников, имеющих способность создавать, под воздействием солнечного света, электронную проводимость «р-n» типа. Солнечный модуль состоит из определенного количества фотоэлементов, соединенных между собой, поэтому принцип работы устройства можно рассмотреть на работе отдельного элемента. Схематично, работа фотоэлемента, представлена на рис. 2.1. Фотоэлемент изготавливается из двух слоев кремния, в каждый из которых добавляются различные вещества, определяющие тип проводимости конкретного слоя. Так в верхний слой добавляется фосфор (N — слой), а в нижний–бор (Р — слой). Наличие разности потенциалов обуславливает возникновение электрического поля, под воздействием которого, разнозаряженные частицы начинают движение. Положительно заряженные движутся в верхний слой, отрицательно заряженные — в нижний.

Рис.2.1. Схема работы фотоэлемента

Эмиттер (область n-типа) и база (область p-типа) соединяются проводами для протекания электронов по внешней цепи путем подключения нагрузки. Электроны рассеивают энергию на внешней нагрузке через цепь и возвращают к фотоэлементу.

Солнечные фотоэлектрические системы просты в обращении, однако, сами фотоэлементы содержат сложные полупроводниковые устройства, аналогичные используемым для производства интегральных схем. Совокупность таких элементов образует фотоэлектрическую панель, либо модуль.

Фотоэлектрические модули, благодаря своим электрическим свойствам, вырабатывают постоянный ток. Главные преимущества фотоэлектрических установок заключается в том, что они не имеют движущихся частей, их конструкция очень проста, производство — технологично. К их недостаткам можно отнести разрушение полупроводникового материала от времени, зависимость эффективности работы системы от ее запыленности. Все это ограничивает срок службы фотоэлектрических преобразователей. В настоящее время в ведущих странах мира проводятся работы по эффективности и снижения стоимости фотоэлектрических преобразователей. Внутренние поля фотоэлементов на основе структур полупроводник-полупроводник или металл-полупроводник создают разность потенциалов около 0,5 В и плотность тока порядка 200 А·М-2 при плотности потока солнечного излучения около 1 кВт·М-2. Промышленные фотоэлементы или солнечные элементы имеют КПД от 10 до 20%. При средней облученности могут вырабатывать от 1 до 2 кВт электроэнергии в день с 1 м2.

Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

2.2. Поколения фотоэлементов

В зависимости от материала, конструкции и способа производства принято различать три поколения фотоэлементов:

–ФЭП первого поколения создаются на основе пластин кристаллического кремния;

–ФЭП второго поколения создаются на основе тонких пленок;

–ФЭП третьего поколения создаются на основе органических и неорганических материалов., а также на основе каскадных многослойных структур и развивающихся технологий, к которым относятся:

–фотоэлементы с квантовыми точками,

–фотоэлементы, сенсибилизированные красителем,

–фотоэлементы на основе полимеров,

–фотоэлементы на основе перовскита.

2.2.1. Первое поколение фотоэлементов

Первое поколение фотоэлементов — классические кремниевые элементы с традиционным p-n переходом. Как правило, это пластины из чистого монокристаллического или поликристаллического кремния толщиной 200-300 мкм. Они характеризуются высоким КПД (17-22%) и высокой себестоимостью. В последние годы производителям удалось сократить себестоимость производства их, что обеспечило укрепление их позиций на мировом рынке — около 82%

В ФЭП первого поколения используются следующие материалы:

–монокристаллический кремний (mc-Si),

–поликристаллический кремний (m-Si),

–на основе GaAs, арсени́д га́ллия — химическое соединение галлия и мышьяка,

–ribbon-технологии (EFG, S-web),

–тонкослойный поликремний (Apex).

Если основной элемент монокристаллической батареи — это искусственно выращенный монокристалл больших размеров, то другой вид светоприемников имеет полупроводниковый элемент поликристаллической структуры. Считается, что для потребления энергии Солнца оптимальным вариантом являются поликристаллические солнечные батареи. Они дешевле своего монокристаллического аналога, так как для производства используют обрезки, оставшиеся после монокристаллических элементов. Кремний при изготовлении рабочего элемента поликристаллической панели просто охлаждается из горячего расплава, что не требует высоких затрат и сложных технологий. По внешнему виду поликристалл кремния отличается от монокристалла неоднородностью цветовой гаммы, отливающей голубым и светло-синим цветом.

В настоящее время основным материалом для производства солнечных элементов является достаточно распространенный химический элемент — кремний (Si), составляющий почти четвертую часть массы земной коры. Однако встречается он в природе в связанном виде (SiO2).

ФЭП на основе монокристаллической пластины из кремния представлена на рис.2.2. Отличие этих преобразователей в том, что светочувствительные ячейки направлены только в одну сторону. Это дает возможность получать самый высокий КПД — до 25%. Но при этом панель должна все время быть направлена на источник света (Солнце), иначе мощность отдачи существенно снижается. Такая панель хороша только в солнечную погоду и станет оптимальной для южных районов нашей страны.

Рис.2.2. ФЭП на основе монокристаллического кремния

Кремниевые монокристаллические панели легко узнать при визуальном осмотре. В углах элементов хорошо различимы квадратики белого цвета. Для самих же пластин характерна поверхность однородного синего цвета. Солнечным панелям монокристаллическим большой площади необходимы поворотные устройства, которые бы поворачивали конструкцию вслед за движущимся солнцем, стараясь, чтобы на лучи падали на пластину максимально близко к прямому углу. Период их эксплуатации достигает 25 и более лет.

ФЭП на основе поликристаллической пластины из кремния представлена на рис 2.3.

Рис.2.3. ФЭП на основе поликристаллического кремния

Наибольшее распространение на сегодняшний день получили модули, изготовленные на основе фотоэлектрических поликристаллических элементов. Востребованность данного типа альтернативных энергоресурсов объясняется наиболее оптимальным соотношением стоимости изделия и количества получаемой с его помощью энергии. Данную разновидность можно определить по синему цвету и кристаллической структуре образующих деталей, а установка модулей не составит особого труда. Поликристаллические элементы имеют строго квадратную форму. Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого

ФЭП на основе поликристаллической пластины содержат кристаллы кремния, которые направлены в разные стороны, что дает более низкий КПД, до 20%. Однако главным преимуществом этого вида солнечных панелей является наличие отличной эффективности при плохом и рассеянном свете. Такая батарея все равно будет питать аккумуляторы в пасмурную погоду.

2.2.2. Второе поколение фотоэлементов

Второе поколение фотоэлементов так же основывается на использовании p-n перехода, однако не используют кристаллический кремний как основной материал. Обычно используются следующие материалы:

–аморфный кремний (a-Si),

–микро — и нанокремний (pc-Si/nc-Si),

–кремний на стекле (CSG),

–теллурид кадмия (CdTe),

–селенид меди — индия-галлия (CIGS).

Фотоэлементы второго поколения являются тонкопленочными, и они производятся вакуумным методом. Вакуумная технология по сравнению с технологией производства кристаллических ФЭП является менее энергозатратной, а также характеризуется меньшим объемом капитальных вложений. Она позволяет выпускать гибкие дешевые ФЭП большой площади, однако коэффициент преобразования таких элементов ниже по сравнению с ФЭП первого поколения.

Как правило, толщина поглощающего свет слоя полупроводника составляет всего от 1 до 3 мкм. Тонкопленочные фотоэлементы, представляющие собой тонкую пластину из стекла с нанесенными слоями полупроводников либо фольгу, можно размещать на поверхности любой конфигурации, а также наносить на ткани, и даже использовать вместо жалюзи.

Наиболее распространены аморфный кремний, теллурид кадмия (CdTe) и. селенид индия/галлия/меди (CIGS).

Аморфные кремниевые тонкопленочные солнечные элементы присутствуют на рынке уже более 20 лет, и a-Si, вероятно, является наиболее хорошо развитой технологией тонкопленочных солнечных элементов. Аморфный кремний выступил в качестве более дешевой альтернативы монокристаллическому. Первые СЭ на его основе были созданы в 1975 году. Оптическое поглощение аморфного кремния в 20 раз выше, чем кристаллического. Поэтому для существенного поглощения видимого света достаточно пленки а-Si:Н толщиной 0,5–1,0 мкм вместо дорогостоящих кремниевых 300-мкм подложек. Кроме того, благодаря существующим технологиям получения тонких пленок аморфного кремния большой площади, не требуется операции резки, шлифовки и полировки, необходимых для СЭ на основе монокристаллического кремния. По сравнению с поликристаллическими кремниевыми элементами изделия на основе a-Si:Н производят при более низких температурах (300°С) и при этом можно использовать дешевые стеклянные подложки, что сократит расход кремния в 20 раз.

Процесс производства таких фотоэлементов более автоматизирован и имеет значительно меньшую себестоимость. Основным недостатком фотоэлементов второго поколения является меньшая эффективность, по сравнению с фотоэлементами первого поколения, которая колеблется в зависимости от технологии от 7-15%. В настоящее время их доля рынка составляет около 18%.

Аморфные пластины получают путем напыления кремния и примесей в вакууме. Слой кремния наносится на прочный слой специальной фольги. Механизм их изготовления совершенно иной, чем у кристаллических фотоэлементов. Для них используется гидрид вместо чистого кремния. Его нагревают до парообразного состояния. Когда пары достигают подложки, они осаждаются на ней. Затраты на изготовления снижаются, а кристаллы не образуются (в классическом понимании). Полученные фотоэлементы в основе имеют полимерную подложку гибкую либо жесткий стеклянный лист. Современные модели комбинируют из нескольких слоев, обогащенных германием и углеродом. Это позволяет устранить главный недостаток панелей a-Si — быструю деградацию ячеек.

За последнее время коренным образом изменилась и технология нанесения слоев полупроводника. Ранее нанесение осуществлялось путем вакуумного напыления, в настоящее же время разработана инновационная технология — печатание специальными чернилами, содержащими смесь полупроводниковых наночастиц. Применение новой технологии и увеличение объемов производства привели к значительному удешевлению солнечной электроэнергии.

Разработано уже 3 поколения панелей из аморфного кремния, рис. 2.4, анализ характеристик которых дает право говорить о растущем КПД. Первые образцы отличались эффективностью, едва достигавшей 5%, у второго поколения это значение достигало 9, а у последних разработок это уже 12%.

Панели из аморфных кремниевых пластин имеют следующие преимущества:

–гибкая основа, упрощающая монтаж и расширяющая область использования;

–в рассеянном свет высокий КПД;

–стабильность при высокой температуре;

–устойчивость к повреждениям механического характера;

–независимость от загрязнений.

Рис.2.4. Панель из аморфных кремниевых пластин

При правильной эксплуатации они служат не менее 20 лет, в течение этого времени падение мощности составляет 15-20%.

Их рекомендуется использовать там, где часто наблюдается облачная и пасмурная погода. Они будут неплохо работать в условиях рассеянного или отраженного света. Также годятся они и для жаркого климата, так как лучше переносят нагревание и теряют при этом меньше мощности. Единственным минусом считается потребность в большой площади.

Теллурид кадмия считается лучшим однопереходным полупроводниковым материалом по совокупности трех показателей — поглощающая способность, надежность, стоимость. CdTe значительно производительнее кремния и намного дешевле более эффективных пленок на базе дорогостоящих германия и индия.

Подложка пленки может быть не металлической, а стеклянной, а сами ячейки — полужесткими или гибкими. CdTe отличается стабильностью, долговечностью, малой чувствительностью к изменению освещения и быстро растущим КПД новых поколений модулей.

Несмотря на то, что кадмий является токсичным веществом, его использование компенсируется вторичной переработкой материала. Тем не менее, озабоченность по этому поводу все еще существует, и поэтому широкое применение этой технологии ограничено.

Особенность строения солнечных панелей типа CIGS заключается в том, что они созданы на сульфидах редкоземельных элементов путем композитного смешения галлия, индия и меди. Такие панели являются «чемпионами» по КПД и стойкости, но стоят очень дорого.

Коммерческое применение пока ограничено только космосом и авиационной отраслью, поскольку добыча индия и галлия на планете ограничена всего несколькими сотнями тонн в год. Даже если бы все они пошли на изготовление батарей, общая мощность панелей едва достигла бы 10 ГВт.

В практике нашли применение гибридные панели, в которых объединены аморфный кремний и монокристаллы. По параметрам панели похожи на поликристаллические аналоги, рис.2.5.

Рис.2.5. Гибридные панели

Особенность гибридных панелей — лучшее преобразование солнечной энергии в условиях рассеянного света.

2.2.3. Третье поколение фотоэлементов

Третье поколение фотоэлементов также относятся к тонкопленочным технологиям, однако они лишены привычного понятия p-n перехода. Идея создания фотоэлементов третьего поколения заключалась в дальнейшем снижении их себестоимости, отказе от использования дорогих и токсичных материалов в пользу дешевых и перерабатываемых полимеров и электролитов. Важным отличием также является возможность нанесения слоев печатными методами, например, по технологии «рулон-к-рулону» (R2R). В настоящее время основная часть проектов в области фотоэлементов третьего поколения находятся на стадии исследований.

Третье поколение фотоэлементов включает в себя новейшие развивающиеся технологии, к которым относятся:

–фотоэлементы с квантовыми точками,

–фотоэлементы, сенсибилизированные красителем,

–фотоэлементы на основе полимеров,

–фотоэлементы на основе перовскита.

Перспективный вид батарей ближайшего будущего построен на свойствах физических квантовых точек — микроскопических включений полупроводников в тот или иной материал. Геометрически такие «точки» имеют размер в несколько нанометров и распределяются в материале так, чтобы охватить поглощение излучения всего солнечного спектра — ИК, видимого света и УФ. Огромным преимуществом подобных панелей является возможность работать даже ночью, генерируя около 40% максимальной дневной мощности.

Солнечные элементы с квантовыми точками (QD) состоят из нанокристаллов полупроводника на основе переходного металла. Нанокристаллы смешиваются в растворе и затем наносится на кремниевую подложку. Как правило, фотон будет возбуждать электрон там, создавая единую пару электронных дырок в обычных сложных полупроводниковых солнечных элементах. Однако, если фотон попадает в QD определенного полупроводникового материала, может быть произведено несколько пар (обычно две или три) электронных дырок.

Солнечные элементы, сенсибилизированные красителями (DSSC), были впервые разработаны в 1990-х годах и имеют многообещающее будущее. Они работают по принципу искусственного фотосинтеза и состоят из молекул красителя между электродами. Эти элементы экономически выгодны и имеют преимущество легкой переработки. Они прозрачны и сохраняют стабильность и твердое состояние в широком диапазоне температур. Эффективность этих ячеек достигает 13%.

Перспективными считаются фотоэлементы на основе мезопористых (с наноразмерными порами) оксидных полупроводников, покрытых органическим красителем. Эти ячейки прославили имя профессора и получили название «ячейки Гретцеля». Они используют принцип, похожий на органический фотосинтез: поглощение квантов света молекулами органического красителя и протекание окислительно-восстановительных реакций при облучении солнечным светом. На рис.2.6. схематично приведено устройство ячейки Гретцеля. Конструктивно простейшая ячейка Гретцеля состоит из пластинки оптически прозрачного стекла с токоприемниками и электропроводящим покрытием, на которую нанесен слой из высокопористого диоксида титана, являющегося полупроводником. Поры диоксида титана пропитаны специальным органическим красителем, выделяющим электроны под воздействием солнечного света.

Рис.2.6. Принципиальная схема фотоэлектрической ячейки Гретцеля

Пластина, на которую нанесён диоксид титана — это анод ячейки. Катодом ячейки является противоположный электрод, который обычно называют противоэлектродом–это токопроводящая подложка другой пластины, на которую в прототипе ячейки был нанесён платиновый подслой — катализатор. Между электродами — токопроводящий электролит (в первоначальном варианте — трийодит в жидкой форме). Принцип работы такого фотоэлемента следующий. Свет проходит через прозрачную подложку и поглощается фотоактивным красителем. Далее эти электроны диффундируют через слой полупроводника к прозрачному проводящему электроду (токоприёмнику) за счет градиента концентрации. Электролит замыкает электрическую цепь и позволяет подходить электронам от катода с платиновым покрытием к полупроводнику, где происходит рекомбинация электронов и «дырок». Таким образом, при достижении порогового значения количества выделяемых электронов образуется электрический ток, который течет от верхнего слоя ячейки к нижнему. Ячейка Гретцеля принципиально отличается от классических фотобатарей на основе кремния. Полупроводник диоксид титана выполняет исключительно роль среды, в которой происходит транспорт (диффузия) фотоэлектронов, генерируемых фотовозбужденным красителем. В кремниевых фотоэлементах полупроводник кремний выполняет двойную функцию — генерирует фотоэлектроны и является средой для транспорта электронов. В ячейке Гретцеля краситель, выступая в роли фотосенсибилизатора (т.е. вещества с увеличенной чувствительностью к воздействию света), играет главенствующую, доминирующую роль, а остальные компоненты — анод из диоксида титана, электролит, катод — играют вспомогательную роль. Работа такой ячейки часто сравнивается с фотосинтезом, поскольку оба процесса используют пигменты и окислительно-восстановительную реакцию, протекающую в электролите.

Теоретически, в улучшенном варианте, ячейка Гретцеля сможет стать основным источником энергии для солнечных районов планеты, благодаря её максимальной экологичности и близости к природе.

Фотоэлементы, в которых используются красители в качестве фотосенсибилизаторов, получили сокращённое англоязычное обозначение DSSC (Dye-Sensitized Solar Cell). К основным достоинствам солнечных батарей на красителях следует отнести их лёгкость, принципиальную возможность создавать гибкие конструкции, простоту производства, низкую цену при использовании доступных и недорогих компонентов и веществ, широкий выбор цвета, способность работать при невысокой освещенности и даже внутри помещения. Недостатки DSSC: недостаточная долговечность, относительно невысокий на настоящее время КПД (в районе 10%), экзотичность химического строения красителей. Последний недостаток компенсируется использованием природных красителей.

Полимерные солнечные элементы считаются"гибкими", так как используемая подложка является полимером или пластиком. Они состоят из тонких функциональных слоев, последовательно соединенных между собой и покрытых полимерной пленкой или лентой. Обычно он работает как комбинация донора (полимера) и ресивера (фуллерена). Существуют различные типы материалов для поглощения солнечного света, в том числе органические материалы, такие как конъюгат-полимер. Особые свойства полимерных солнечных элементов открыли новый путь для разработки гибких солнечных устройств, в том числе текстильных и тканевых.

Большинство технологий основаны на применении органических полимерных материалов. Несмотря на низкий КПД (лабораторный рекорд на сегодня — 10,8%, коммерческие прототипы — до 7%) панели на органической основе 3-го поколения сегодня активно исследуются. Для полимеров органического происхождения характерны следующие важные черты:

–простота и дешевизна создания;

–отсутствие проблем с утилизацией;

–неограниченность сфер применения;

–возможность изготовления в прозрачном виде.

Подобные панели практически невесомы, а при использовании технологии «tandem solar batteries» (тандемное соединение) их можно встраивать в окна и регулировать прозрачность.

Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов. При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие.

В настоящее время третье поколение фотоэлементов включает в себя разнообразные технологии, такие как перовскитовые солнечные элементы, которые основаны на соединениях перовскита (комбинация двух катионов и галогенида). Эти солнечные элементы основаны на новейших технологиях. Органо-неорганические материалы, имеющие перовскитную структуру, — это совершенно новая форма фотоэлектрических преобразователей. Перовскит представляет собой минерал преимущественно черного или красновато-коричневого цвета с оригинальной структурой кристаллической решетки. Он богат содержанием примесей титана, ниобия, железа, церия, кальция, тантала. Структура перовскита настолько уникальна, что эти материалы были представлены в различных модификациях — от нанопленок до нанонитей. Классический» перовскит — это CaTiO3, рис.2.7, кристаллы которого имеют псевдокубическую (нарушенную кубическую) структуру.

Рис.2.7. Перовскит CaTiO3

Однако, тем же именем принято называть и другие материалы с такой же структурой. Сам титанат кальция состоит из атомов трех типов: А (атомы кальция), В (титана) и Х (иногда их называют С, атомы кислорода). Причем А находится в центре псевдокубических структур, В — в угловых узлах псевдокуба, а С образуют вокруг В восьмигранники, на шести вершинах которых находятся как раз по шесть атомов кислорода. В этой стандартной структуре практически любой из атомов обычной схемы ABX3 может быть заменен на относительно сходный по свойствам. И структура в целом при этом сохранится. При этом А—всегда большой катион (положительно заряженный ион), В—всегда катион меньшего размера чем А, а Х—всегда анион (отрицательно заряженный ион). Даже среди природных минералов часто встречаются те, в которых А был не кальцием, а, например, церием, да и В—не титаном, а ниобием или танталом.

Специфическая пространственная структура кристаллов перовскита дает им массу необычных свойств. Наиболее значимой зоной использования перовскитных материалов сейчас считается солнечная энергетика. Причины просты: КПД таких материалов к 2020 году взлетел до 25,2 % — и это для однослойных фотоэлементов. Лучшие серийные кремниевые солнечные батареи имеют КПД в те же 25%. Тут перовскиты догнали своего основного конкурента. Есть у перовскитов здесь и преимущество, недоступное обычным кремниевым панелям: слегка изменяя состав слоев такого материала, можно сдвинуть ширину его запрещенной зоны—такого значения энергии электрона, которой он в данном материале иметь не может. За счет этого такие слегка отличающиеся друг от друга перовскиты будут чувствительны к несколько разным длинам световых волн. Считается, что перовскитная пленка толщиной всего в 500 нанометров может содержать достаточно слоев, чтобы эффективно генерировать электричество сразу от всех участков видимого диапазона. Поэтому на их основе легко создать двух — и более многослойные материалы с КПД выше, чем у кремния.

Другая положительная особенность перовскитных фотоэлементов: их можно получить простым осаждением из раствора, примерно, как печатаемые буквы в струйном принтере. Это большой плюс на фоне кремниевых батарей, требующих сверхчистого кремния, вакуумных камер и очень непростого процесса его осаждения на подложку.

Наряду с такими очевидными достоинствами типичные перовскитные фотоэлементы имеют и серьезные недостатки. Самый популярный в перовскитной фотовольтаике тип соединений — йодид свинца-метиламмония с общей формулой CH3NH3PbX3, где X, как правило, йод или бром/хлор. При контакте такого соединения с водой и кислородом, а также при периодическом нагреве, оно может быть химически нестабильным и быстро деградировать с разрушением своей структуры. Для ее стабильности опасен и остаточный слой йодида свинца, остающийся рядом с конечными кристаллами перовскита после окончания процесса его получения (цикла осаждения). Единственное, что в настоящий момент не позволяет запустить перовскитные панели, рис. 2.8, в промышленное производство–это сравнительно невысокие показатели устойчивости к перегреву и восприимчивости ультрафиолетового излучения материалов с так называемой перовскитной структурой, причем материалы эти были представлены в различных модификациях — от нанопленок до нанонитей.

Рис. 2.8. Солнечная перовскитная панель

В Калифорнийском университете в Дэвисе под руководством профессора Д. Мандея проводятся работы по созданию нового типа солнечного элемента, который потенциально может работать круглосуточно. При благоприятном завершении работ будет создана интересная возможность сбалансировать энергосистему в течение цикла день-ночь. В настоящее время создана терморадиационная ячейка, которая генерирует электрический ток, поскольку излучает инфракрасный свет (тепло) в направлении холода ночного неба. Обычная солнечная панель генерирует энергию, поглощая солнечный свет, что и вызывает появление напряжения в устройстве. В новом устройстве свет будет не поглощаться, а излучаться, но при этом все равно будет происходить генерация энергии», поясняют авторы. Согласно подсчетам исследователей, солнечные «фермы» могут производить до 50 Вт электроэнергии на квадратный метр в идеальных условиях.

Учёные из Государственной лаборатории Айдахо близки к завершению работ над своей новой разработкой — сверхтонкой солнечной панелью, которая значительно ниже по себестоимости за счёт использования гибких материалов и сможет получать солнечную энергию после захода солнца. Технология включает в себя встроенные квадратные спирали из токопроводящего металла на пластмассовом листе. Эти спирали можно назвать «наноантеннами», так как их диаметр составляет всего 1/25 толщины человеческого волоса. Наноантенны могут получать энергию, как от солнечного света, так и от тепла, выделяемого землёй, поэтому они намного будут более эффективны и потенциально более широко применимы, чем традиционные солнечные элементы.

2.3. Каскадный солнечный элемент с гетеропереходами.

Вплоть до середины 80-х годов XX века преобразование солнечной энергии в электрическую в фотоэлементах как на основе арсенида галлия, так и кремния (AlGaAs — GaAs), осуществлялось при помощи простых технологий и простых структур. Затем была решена такая технологическая проблема, как создание широкозонных окон AlGaAs толщиной, которая может сравниться с толщиной наноразмерных активных зон в гетеролазерах, что и дало возможность создать каскадные солнечные элементы.

Структура каскадных солнечных элементов (КСЭ) с гетеререходами (гетеропереход — контакт двух различных полупроводников) предусматривает не менее двух элементов из полупроводниковых элементов разных типов, в которых специально подобраны значения ширины запрещенной зоны.

Двухкаскадные солнечные элементы различных типов были созданы в начале 80-х годов XX века. Каскадные солнечные элементы, применяемые в настоящее время в космических аппаратах, содержат третий каскад с германиевым p-n-переходом. В это же время начались исследования возможности создания четырех-, пяти-, а возможно и еще более многокаскадных структур, которые позволили бы реализовать высокие значения КПД в солнечных элементах. В таблице 2.1. представлены значения КПД каскадных СЭ. Стоит отметить, что столь высокие показатели КПД позволяют уменьшить стоимость получаемой солнечной энергии почти в 2 раза в сравнении с солнечными батареями на основе кристаллического кремния.

Таблица 2.1. Показатели КПД в % для переходов каскадных СЭ

Теоретическое значение КПД

Ожидаемое значение КПД

Реализованное значение КПД

1 p-n-переход

30

27

25,1

2 p-n-перехода

36

33

30,3

3 p-n-перехода

42

38

31,0

4 p-n-перехода

47

42

5 p-n-переходов

49

44

Весьма перспективны каскадные батареи на основе аморфного гидрогенизированного кремния (aSi:H) и сплавов на его основе, (кремний-германий, SiGe), состоящие из трех элементов с различной шириной запрещенной зоны. Аморфный кремний содержит водород, который блокирует оборванные связи кремния, поэтому он является гидрогенизированной формой кремния. Гидрогенизированный аморфный кремний является прямозонным полупроводником с шириной запрещенной зоны 1,8 эВ и высоким коэффициентом оптического поглощения. Это означает, что пленка толщиной всего несколько микрон поглотит большую часть солнечного излучения. При легировании пленки аморфного кремния германием ширина запрещенной зоны уменьшается, а при добавлении углерода — увеличивается. Это позволяет создавать солнечные элементы с двумя или тремя гетеропереходами, перекрывающими практически весь солнечный спектр. Верхний слой, поглощающий коротковолновую область солнечного спектра, сформирован из сплава на основе a-Si:H с шириной оптической щели 1,8 эВ. Для серединного элемента в качестве слоя i-типа использован сплав a-SiGe:H с содержанием германия ~10–15%. Ширина оптической щели данного слоя (1,6 эВ) идеальна для поглощения зеленой области солнечного спектра. Нижняя часть СЭ поглощает длинноволновую часть спектра, для этого используется i-слой a-SiGe:H с концентрацией германия 40–50%. Непоглощенный свет отражается от заднего контакта на основе Ag/ZnO/ Все три элемента каскадной СБ связаны между собой сильнолегированными слоями, образующими туннельные переходы между соседними элементами. Слои, формирующие туннельные переходы, должны быть предельно тонкими (в нанометровом диапазоне) для минимизации поглощения света, в то время как фотоактивньге слои должны быть примерно на 2 порядка толще. Решающим же обстоятельством для экономически оправданного использования многопереходных фотоэлементов является тот факт, что они могут весьма эффективно работать при высоко конценгрированном солнечном облучении (вплоть до 2000-кратного). Это открывает широкие перспективы уменьшения стоимости и поверхности солнечных элементов и, как следствие, снижения стоимости солнечной электроэнергии.

Ученые ФТИ им. А.Ф. Иоффе РАН предложили солнечные энергоустановки (СФЭУ) на основе высокоэффективных концентраторных фотоэлектрических модулей с линзами Френеля и КСЭ с КПД 36-40 % на основе наногетероструктур. Важным достоинством разработанных многопереходных СЭ III-V является то, что они эффективно преобразуют в электричество концентрированное солнечное излучение со степенью концентрации К = 500 — 1 000х, что не могут делать солнечные элементы на основе кремния.

Известны два способа выполнения преобразования солнечной энергии посредством каскадных солнечных элементов. Первый из этих способов предусматривает использование оптических фильтров, имеющих зеркальную поверхность, второй — создание элементов с переходами, расположенными последовательно вдоль хода солнечных лучей. В случае использования солнечных фильтров солнечное излучение будет разлагаться на несколько пучков, каждый из которых должен быть направлен на конкретный элемент с согласованными характеристиками распределения излучения. В случае использования фотопреобразователей с последовательно расположенными элементами солнечное излучение должно в первую очередь попадать на широкозонный материал. Фотоны с высокой энергией будут поглощаться в первом элементе, остальные фотоны попадут на второй элемент, который также будет поглощать фотоны с наиболее высокой энергией. Оставшиеся фотоны поступят на третий элемент. Этот процесс селективного поглощения будет продолжаться до тех пор, пока солнечное излучение не попадет на элемент с минимальной шириной запрещенной зоны. Подобная конструкция обеспечивает использование существенно большей части солнечного излучения и дает возможность получить высокий КПД.

Схема каскадного солнечного элемента, содержащего оптический фильтр, концентратор солнечного излучения и два каскадных элемента, показана на рис. 2.9.

Рис.2.9. Схема каскадного солнечного элемента с концентратором излучения

Концентратором солнечного излучения в этом солнечном элементе является линза Френеля. Оптический фильтр располагается под углом 45 градусов к оси сконцентрированного солнечного пучка, в результате чего отраженная часть солнечного пучка, направляемая на первый элемент, обладает такой же геометрической формой, что и часть светового пучка, проходящая через фильтр и направляемая ко второму элементу. Если в каскадный элемент необходимо ввести дополнительные солнечные элементы, то при этом потребуется установка дополнительных оптических фильтров, каждый из которых будет отражать солнечное излучение к определенному элементу.

К настоящему времени по технологии перекристаллизации тонкопленочных аморфных или мелкокристаллических пленок разработаны высокоэффективные солнечные элементы, предназначенные для использования в солнечных батареях с сферическими и цилиндрическими концентраторами солнечного излучения, рис. 2.10. и рис 2.11.

Рис.2.10. Схема концентрирования солнечного излучения с сферическим отражателем: 1.сферический отражатель, 2. дополнительный отражатель, 3.каскадный солнечный элемент

Рис.2.11. Солнечная батарея на основе каскадных солнечных элементов с цилиндрическими отражателями

Особенностью сферических концентраторов солнечного света является то, что отражатель в них используется в качестве радиатора. Сферические концентраторы могут иметь степень концентрирования порядка нескольких сотен, а цилиндрические — нескольких десятков (степень концентрации солнечного излучения равна отношению плотности потока излучения на поверхность поглотителя к плотности потока излучения, поступающего на площадь апертуры (действующего отверстия) концентратора). При этом тепловая нагрузка цилиндрических концентраторов значительно ниже, чем тепловая нагрузка сферических концентраторов, однако количество солнечных элементов в этом случае должно быть намного больше.

Что касается технологии получения каскадных солнечных элементов, то здесь используют перекристаллизацию тонкопленочных аморфных или мелкокристаллических пленок соединений AlGaInPAs, состав которых подбирают таким, чтобы в максимальной степени снизить рассогласование параметров решетки и эпитаксиального слоя и одновременно сформировать требуемый профиль ширины запрещенной зоны

Гетероструктуры на основе InP (фосфид индия), являющиеся важными прямозонными полупроводниками с шириной запрещенной зоны 1.34эВ, привлекают внимание исследователей в плане осуществления высокоэффективного преобразования солнечной энергии в электрическую.

Определяющей характеристикой солнечных фотоэлектрических установок и каскадных солнечных элементов является максимальное значение КПД, которое меняется с течением времени в сторону повышения в результате совершенствования технологии изготовления, улучшения свойств исходных материалов и наращивания многослойности элементов. Широко применяемые однослойные поликристаллические солнечные элементы на подложке из кремния характеризуются КПД до 20%, двухслойные элементы на той же подложке — до 30%, трехслойные — до 40%. Аморфные солнечные элементы обеспечивают КПД до 10%, однослойные солнечные элементы на основе AsGa — до 40%. Считается, что солнечные элементы на основе арсенида галлия наиболее перспективны.

На КПД солнечных элементов в значительной степени влияют такие факторы, как каскадность (количество слоев) солнечного элемента и наличие концентраторов солнечного излучения. В настоящее время для экспериментального однослойного солнечного элемента удалось достигнуть КПД 37%; для двухслойного и трехслойного солнечных элементов этот показатель превысил 50%, а для четырехслойного — 72% при коэффициенте концентрации на уровне 1000.

Некоторые ученые полагают, что в четырех-, пяти-, а может быть, и в еще более многокаскадных структурах можно существенно повысить КПД фотоэлемента. Для реализации этой цели нужны новые материалы высокого качества, такие элементы нового поколения, как например, на базе материалов А3B5. К полупроводниковым материалам А3В5 относятся соединения бора, алюминия, галлия и индия с азотом (нитриды), фосфором (фосфиды), мышьяком (арсениды) и сурьмой (антимониды).

Отметим, что для широкозонных нитридов уже существует значительный технолотический задел. Однако для КСЭ требуются скорее узкозонные материалы, в большей степени согласованные по типу и периоду решетки с материалами, уже работающими в трехкаскадных структурах. Такими материалами могут быть, например, твердые растворы GalnNAs, интенсивно изучаемые в настоящее время.

Предполагаемой альтернативой перспективы развития солнечных фотоэлементов может быть использование материалов на основе наногетероэпитаксиальных структур. При этом дизайн солнечного элемента значительно упрощается, так как солнечный элемент на основе многослойных наногетероэпитаксиальных структур однокаскадный. Чтобы изготовить такой солнечный элемент необходимы два полупроводниковых материала: матричный (широкозонный) и узкозонный

В узкозонном полупроводнике вблизи границы раздела может образовываться инверсионный слой, играющий роль потенциально ямы для электронов, в которой существуют уровни размерного квантования. Важнейшим достоинством гетероперехода является высокое качество гетерограницы, которое можно добиться выбором в качестве компонент гетеропары веществ с хорошим согласием постоянных решетки. Примером такой гетеропары являются узкозонный GaAsи и широкозонный твердый раствор AlxGa1-xAs.

Различают два типа квантовых точек: эпитаксиальные квантовые точки и коллоидные квантовые точки. По сути, они названы так по методам их получения. При помощи коллоидного синтеза можно получать нанокристаллы, покрытые слоем адсорбированных поверхностно-активных молекул. Таким образом, они растворимы в органических растворителях, после модификации — также в полярных растворителях. Обычно квантовой точкой является кристалл полупроводника, в котором реализуются квантовые эффекты. Электрон в таком кристалле чувствует себя как в трехмерной потенциальной яме и имеет много стационарных уровней энергии. Соответственно при переходе с одного уровня на другой квантовой точкой может излучать фотон. При всем при этом переходами легко управлять меняя размеры кристалла. Возможно также перекинуть электрон на высокий энергетический уровень и получать излучение от перехода между более низколежащими уровнями.

Многопереходные каскадные солнечные элементы очень сложны по структуре. Однако решающим обстоятельством экономически оправданного их использования является то, что каскадные солнечные элементы способны эффективно работать в условиях концентрированного солнечного излучения.

Гетероструктурная технология (HJT) является гибридом (совмещением) кристаллической и тонкопленочной технологий исполнения солнечных элементов. Результатом служит объединение ключевых преимуществ как кристаллических панелей (довольно высокий КПД, малая степень световой деградации), так и тонкопленочных (незначительное падение производительности при нагреве ячеек, более высокая эффективность в улавливании рассеянного и отраженного света). Эффективность гетеропереходных модулей HEVEL превосходит показатели классических поликристаллических модулей.

При реализации метода преобразования концентрированного солнечного излучения возникают следующие проблемы:

–при повышении мощности солнечного излучения пропорционально увеличивается плотность генерированного в КСЭ фототока. Это требует уменьшения последовательного сопротивления элемента для уменьшения омических потерь;

–увеличивается тепловая нагрузка на СЭ, что требует создания эффективной системы теплоотвода;

–возникает необходимость применения высокоэффективных и дешевых концентрирующих систем излучения;

–возникает необходимость разработки систем точного наведения и слежения за положением Солнца, что усложняет конструкцию и эксплуатацию фотоэлектрических установок.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Конструкции и монтаж фотоэлектрических модулей предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я