КУРС ПРОГРАММЫ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АРМАТУРНОГО ХОЗЯЙСТВА

Станислав Львович Горобченко, 2020

Курс "Программы повышения эффективности арматурного хозяйства" дает систематизированное представление о том, как можно развивать такую большую подсистему непрерывных производств как трубопроводная арматура. На многочисленных примерах из области химии и ЦБП и ведущих арматурных компаний демонстрируются современные подходы к решению этой задачи. Пособие предназначено для слушателей курсов дистанционного обучения "Трубопроводная арматура", "Маркетинг и продажи трубопроводной арматуры" , "Менеджер по продажам промышленного оборудования", "Менеджер по проектным продажам", "Менеджер по продажам сервисных услуг" и др.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги КУРС ПРОГРАММЫ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АРМАТУРНОГО ХОЗЯЙСТВА предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

2. Программы повышения эффективности арматурного хозяйства

2.1. Программа повышения качества регулирования

Требования по качеству в производстве бумаги все время растут, и эти требования должны учитываться при модернизации контуров регулирования процесса. Отклонения от качества продукции или процесса могут быть сняты многими способами, в частности, одним из основных является установка лучших регулирующих клапанов в контурах регулирования.

Очень часто точный аудит полевых устройств и контуров измерения показывает необходимость проверки состояния и работоспособности регулирующих клапанов. Плохая работоспособность клапана является одной из главных причин, вызывающей проблемы с нестабильностью процессов с замкнутым циклом.

Поскольку процесс производства бумаги содержит сложные цепи подпроцессов, то важно определить, какой из регулирующих контуров (участков регулирования) является наиболее критичным. Такими контурами являются те, которые оказывают прямое влияние на качество бумаги или на эффективность и производительность бумагоделательной машины.

НЕЛИНЕЙНОСТЬ В РЕГУЛИРУЮЩИХ КЛАПАНАХ

Основные причины низкой работоспособности регулирующих клапанов включают:

— заедание и несоответствие механического перемещения переданному моменту;

— трение покоя в позиционере, приводе или их сборочном узле;

— превышение размера клапана (часто из-за некорректных данных, принятых при расчете).

Первые две причины относятся к типичным отклонениям от линейности регулирования, а именно, они увеличивают мертвое время реагирования и мертвый ход. Мертвое время реагирования — это задержка во времени перед тем как клапан начал двигаться и в основном вызывается нагрузками по трению. Первоначальной причиной мертвого хода является нагрузка при трении и люфты. Поскольку трение покоя в клапане обычно значительно выше трения движения, то вредные эффекты, такие как превышение хода или колебания и отклонения от хода цикла могут легко появляться.

Во многих контурах регулирования контроллер работает по линейному закону. Чтобы достичь этого, конечный регулирующий элемент — клапан — должен дать полностью линейную характеристику, дающий отклик на входной сигнал безошибочно по всему диапазону регулирования. Хочется отметить, что и основная погрешность контура регулирования также заложена в регулирующем клапане, дающем максимальную погрешность по сравнению с датчиком и логическими цепями контроллера.

Чтобы обеспечить совершенство регулирования, компания Metso Automation разработала новую серию интеллектуальных позиционеров. Новая модель ND 9000 использует микропроцессор, чтобы обеспечить регулирование нового уровня. В этом устройстве измеряются движение затвора клапана и разница давлений за клапаном. Это устройство считывает данные и входной сигнал постоянно дается в программный алгоритм для управления положением регулирующего клапана. Этот принцип улучшает отклик и точность регулирующего клапана. Результатом является лучшее регулирование в процессах, где клапан применяется.

РЕКОМЕНДАЦИИ К ПРИМЕНЕНИЮ

Далее, мы рассмотрим различные части процесса на одной машине по производству качественных бумаг. Прилагаемые рисунки показывают типичные примеры установки клапанов в процессе.

Рис. 2.1.1. Участок подготовки массы

Контур, который регулирует концентрацию в размоле, является весьма важным, поскольку:

— он прямо влияет на точность дозирования и пропорционирования массы, что требует высокой повторяемости для достижения одинакового и стабильного качества бумаги;

— в современных применениях регулирующих систем концентрация прямо влияет на удельное потребление энергии и далее на результаты размола.

В случае если внезапно появляются вариации в концентрации, контур регулирования размола старается отрегулировать приложенную энергию или момент с минимальной задержкой. С другой стороны, если измерение концентрации не производится, управление за энергией размола остается без изменений, но при этом характеристики массы будут варьироваться. Сегментный клапан без сомнений является здесь лучшим выбором. Он имеет высокую возможность работы в широком диапазоне и точность позиционирования, которые в этом случае являются значительно более высокой критической особенностью процесса регулирования, чем время отклика. Любой механический зазор (потеря перемещения и хода) в сочетании «клапан-привод-позиционер» должны быть исключены.

Рис. 2.1.2. Система подготовки композиции

При подготовке композиции и различных компонентов массы они смешиваются вместе, чтобы достичь точного соответствия композиции производимой бумаги. Наполнители обычно добавляются напрямую в поток массы перед очистителями в пропорции к потоку готовой массы. Дозирование должно быть легко повторяемо, и дозирующая система включает возможности различных сочетаний и степени регулирования для различных типов масс. Требуемые условия течения могут широко варьироваться для различных типов бумаги. Клапаны могут требоваться для перекрытия потока при помощи очень небольшого открытия в ситуации низкого расхода. В этом случае рекомендуется V — тип сегментного клапана. Нелинейность (мертвый ход или трение) одного из клапанов вызывает проблемы по пропорции компонентов массы. Нестабильность и ее изменения могут быть также и внезапными, влияя на результаты размола (значение садкости). Наполнители добавляются в массу, чтобы улучшить оптические и печатные свойства бумаги. В простых машинах наполнители управляются при помощи клапанов и идут напрямую в смесительный бассейн в пропорции с полным расходом массы. Все неконтролируемые изменения в пропорции наполнитель — масса являются критическими по отношению к технологическому процессу производства бумаги. Они должны учитываться при расчете удержания и также при расчете содержания золы (остающейся на полотне сухой бумаги).

Управление конечной концентрацией массы является очень важным критическим контуром. Этот регулирующий контур обеспечивает желаемую концентрацию массы на входе на бумагоделательную машину, и он должен иметь возможность корректировать все отклонения, привносимые и создаваемые на ранних ступенях процесса. Измерения должны проводиться в точках трубопровода, где течение остается постоянным. Поскольку машинный бассейн обычно очень большой, то вариации в концентрации в большинстве случаев появляются медленно, что в результате влияет на степень времени задержки. Время отклика клапана не является таким критическим, как точность позиционирования, тем не менее, мертвый ход и люфты не приемлемы. Проблемы с вариациями веса м2 могут быть вызваны флуктуациями в давлении коллектора подачи осветленной воды на регулирующие клапаны контура концентрации. Эти вариации могут вызываться другими контурами концентрации, питающих тот же самый коллектор.

Регулирование концентрации является многоразмерной задачей, которая требует внимательного взгляда на несколько взаимосвязанных требований. Поскольку типы волокна и содержание наполнителя варьируются, необходимо обеспечить широкий диапазон измерений по применениям для лучшей точности. Датчики концентрации адаптированы на широкий диапазон типов волокна, включая вторичные. Датчик концентрации КАЙААНИ МСАi который измеряет полную концентрацию в массах, содержащих наполнители, быстро становится основным стандартом для массовых смесей и точного контроля граммажа. КАЙААНИ LC100 измеряет низкие концентрации, которые характерны для системы циркуляции волокна.

Следующий важный контур — это контур разбавления. Регулирование разбавлением улучшает стабильность процесса. Окончательный элемент в контуре, прецизионный и ответственный элемент разбавления массы, оставался до недавних пор главным условием для стабильного управления концентрацией. Традиционное управление концентрацией, основанное на положении разбавительного клапана, обеспечивает адекватный контроль за отклонениями за длительный период, но эти контуры могут быть дестабилизированы изменениями в давлении разбавительного коллектора или изменениями в расходе массы.

Концепция регулирования концентрации

Улучшенная стратегия регулирования концентрации представлена на рис 2.1.3. В такой схеме расход разбавительной воды управляется безошибочно, несмотря на изменения в давлении коллектора. Улучшается стабильность процесса, особенно во время срывов работы.

Рис 2.1.3. Регулирование концентрации

FC — контроллер расхода

СС — датчик концентрации

Cf — параметры расхода концентрации массы

Fc — расход разбавительной воды

Ff — расход массы

В концепции управления концентрацией контроллер, работа которого основана на балансе массы, используется в комбинации с каскадным регулированием расхода разбавительной воды. Ключ для улучшенного регулирования состоит в том, что некоторые измерения стандартизированы. В дополнение к концентрации массы, также измеряются расход массы, расход разбавления и входящая концентрация (опции). С использованием уравнения баланса массы точное количество разбавляющей воды может быть безошибочно вычислено в каждой ситуации. Сравнение между концепцией регулирования концентрацией (время менее 30 мин) и обычным временем регулирования (больше 30 мин) для одного применения по регулированию концентрацией, приведены ниже на рис 2.1.4.

Рис. 2.1.4. Диаграмма показаний изменений в концентрации

Рис 2.1.5. Система подачи осветленной воды

Важно давление в коллекторе контура концентрации разбавительной воды. Этот контур показан в иллюстрации на емкости осветленной воды, см рис. 2.1.5. Если клапан заедает, он изменяет концентрацию в нескольких узлах, подсоединенных к коллектору, как результат появлений вариаций в давлении воды. Свойства этого клапана должны включать хороший отклик и низкий гистерезис.

Регулирование веса м2 является одним из главных контуров регулирования по отношению к качеству бумаги. Соблюдение композиции готовой массы формирует вес м2 полотна бумаги в машинном направлении. Регулирование основано на измерении расхода массы. Вес м2 сухой бумаги измеряется при помощи поперечных датчиков (т.е. в поперечно-машинном направлении). Скорость отбора проб должна поддерживаться высокой, как только возможно в современных системах. Этот контур регулирования также включает измерение концентрации для компьютерных вычислений веса м2 сухой бумаги, см рис. 2.1.6.

Рис. 2. 1.6. Контур регулирования веса м2

Компания Metso Automation рекомендует клапан, разработанный специально для этих целей — NELES ACE с двухскоростным ступенчатым электроприводом. Этот клапан должен иметь возможность выполнять следующие функции:

— отсутствие холостого перемещения и хода, чтобы обеспечить точное позиционирование;

— высокое разрешение (большое количество шагов регулирования);

— быстрый отклик на изменения в сигнале управления.

Если компенсация отклонений концентрации производится системой, базисный вес метра квадратного может реагировать на эти изменения, поскольку он делает это в соответствии с изменениями реальных значений. Изменения в расходе массы обычно появляются достаточно быстро и с короткой амплитудой. Если контур настроен на медленный отклик (постоянное время отклика) и сигнал управления на положение клапана становится медленнее, чем динамика потока и расхода, то вариации в расходе прямо проходят по всей линии, отражаются на полотне бумаги и должны определяться системой качества.

В добавление к обычным базисным свойствам бумаги (базовый вес, влажность) существует другие важные категории качества или сортность бумаги, такие как цветность, яркость, матовость и глянец. Эти свойства могут быть эффективно управляться при помощи соответствующих химикатов. Следующая таблица иллюстрирует различные добавки и их применения.

Табл. 2.1.1. Применяемые добавки

Добавки направляются в массу посредством регулирования расхода в клапанах. Они вводятся наиболее близко к напорному ящику, и их расход должен наиболее точно регулироваться. Например, если для удержания химикатов они добавляются сразу перед напорным ящиком, то любые отклонения в регулировании расхода вызовут очень быстрое изменение в содержании наполнителя (золе) на полотне.

Контур регулирования в напорном ящике управляет скоростью выхода из щели напорного ящика в соотношении со скоростью сетки. Разница между этими двумя скоростями минимальна и должна регулироваться с особой тщательностью. Регулирование обычно основано на контроллере давления и насосе с регулируемой скоростью. В старых напорных ящиках уровень массы внутри напорного ящика также управляется. Управляющий клапан выпускает воздух из воздушной подушки выше уровня. Несрабатывание клапана вызывает вариации в расходе (давлении в щели напорного ящика). Если выбирается клапан шарового типа, то рекомендуется использование позиционера ND. Рециркуляционный клапан поддерживает одинаковое давление на обоих сторонах коллектора напорного ящика. Клапан имеет тенденцию к кавитации т.к. он встречает повышенную разницу давлений из-за требуемого давления в напорном ящике на скоростных машинах и полный вакуум в деаэраторе. Здесь наиболее эффективно использовать версию Q-TRIM.

Из описания функций, выполняемых клапанами в сложных процессах производства качественных бумаг, которые мы обсуждали, ясно, что некоторые являются менее критичными, чем другие. Чрезмерные отклонения в процессе, вызывающие проблемы с качеством или производительностью, часто идут от плохой работоспособности клапана. Новое поколение"умных"позиционеров способно решать задачи снижения вариаций в процессе и включает новую цифровую технологию для получения оптимального контроля за потоком в наиболее важных узлах бумагоделательных машин.

ВЫБОР РЕГУЛИРУЮЩИХ КЛАПАНОВ

В технических решениях по оснащению клапанами производственных линий необходимо стремиться к минимальной колебательности процесса и отсутствию отклонений от оптимального диапазона регулирования клапана. Причины высокой колебательности регулирующих контуров могут быть разные — и неправильный расчет и выбор клапана, недостатки монтажа, плохая настройка клапана и позиционера, помехи и чрезмерные отклонения в процессе. Дороговизна колебательности заключается в потере продукции, внеплановых остановах, снижении эффективности процесса и высоком взаимовлиянии сопряженных контуров.

Выбор регулирующих клапанов долгое время основывался на различных приблизительных оценочных методах и имеющемся опыте. Для восполнения недостатка в точной и быстрой методике выбора компании разрабатывают методики расчета и выбора регулирующих клапанов, благодаря которым можно выбрать наилучший вариант клапана по точности регулирования и регулирующим свойствам для конкретных условий эксплуатации. Методика таких расчетов основана на графических кривых, расходной характеристике, коэффициенте усиления установленного клапана, которые можно рассчитывать и отображать при помощи соответствующих окон расчетных программ.

ОСНОВЫ РАСЧЕТА. СОБСТВЕННАЯ ПРОПУСКНАЯ ХАРАКТЕРИСТИКА

Оптимальный выбор регулирующего клапана по размеру и типу начинается с внутренней пропускной характеристики клапана. В этом отношении пропускные характеристики клапанов должны тщательно измеряться в испытательных лабораториях.

Характеристики клапана замеряются в условиях, когда перепад давления постоянен. В этом случае величина потока, проходящего через клапан «q» пропорциональна его коэффициенту пропускной способности Сv. Так как коэффициент пропускной способности клапана выражает со своей стороны эффективную величину поперечного сечения потока, то по характеристике клапана можно видеть, что эффективность поперечного сечения потока меняется в функциональной зависимости от степени открытия «h» клапана. На рис 2.1.7. представлены пропускные характеристики наиболее распространенных клапанов в их функциональной зависимости от коэффициента пропускной способности Ф и степени открытия h.

Рис. 2.1.7. Пропускные характеристики наиболее распространенных клапанов в их функциональной зависимости от коэффициента пропускной способности Ф и степени открытия h.

1,2,3,4, — разные условия работы клапана.

РАСХОДНАЯ ХАРАКТЕРИСТИКА

На практике регулирующий клапан — часть технологического трубопровода. Перепад давления в зоне открытия клапана редко постоянен, т.к. при росте величины потока вследствие динамических потерь давление потока на входе клапана падает, а на выходе увеличивается. Поэтому зависимость величины потока q от степени открытия клапана h (вид установочной характеристики) есть функция как технологического трубопровода, так и внутренней кривой клапана. Влияние изменений перепада давления на регулирующий клапан, установленный в технологическом трубопроводе, показан на рис 2. 1.8.

Рис. 2. 1.8. Влияние изменений перепада давления на регулирующий клапан

Природу технологического трубопровода описывают характеризующие коэффициенты Dр1 и Dp2, где нижними индексами определены условия потока, при которых клапан полностью открыт (f) или открыт для обеспечения максимальной величины потока (m), требуемой по проекту. Коэффициенты Dpm можно рассчитать по формулам:

Dpm=dpm\dpo (1)

и

Dpi=dpi\dpo

Где dpo — перепад давления при закрытом клапане.

Тип технологического процесса можно рассчитать по программе Nelprof, когда известны по меньшей мере два различных условия потока, или известны описывающие природу трубопровода коэффициент Dpm и условия максимальной величины потока.

На рис 3 представлена рассчитанная по программе установочная характеристика для клапана Q–ball для одного технического решения, требующего понижения давления. В данном решении применен шаровой клапан Q-ball с верхним входом, сечение трубопровода 100 мм. По программе Nelprof можно также рассчитать скорость потока на выходе и уровень шума в зоне действия регулирующего клапана в целом. Особенность использованного в данном случае решения Q-ball — чрезвычайно широкий диапазон регулирования, что выражается в очень хорошей установочной характеристике, рис. 2.1.9.

Рис. 2.1.9. Установочная характеристика для клапана Q-Ball для значительного перепада давления. Расчет по программе NELPROF.

КОЭФФИЦИЕНТ УСИЛЕНИЯ

Достоинства установочной кривой клапана в отношении возможностей и точности регулирования можно определить при помощи кривой усиления. Кривая усиления клапана описывает изменение углового коэффициента установочной характеристики в зависимости от степени открытия клапана. Усиления установленного клапана есть отношение изменения величины потока dQp к изменению степени открытия dh.

G=dQp\dh. (2)

Где Qp — проходящая через клапан относительная величина потока (Q=q\qm)

По формуле 2 можно определить изменение величины потока. Изменение величины потока есть усиление, умноженное на изменение степени открытия клапана.

Усиление установленного клапана — отправной момент при выборе оптимального размера и внутренней характеристики регулирующего клапана для определенного технологического решения. Выбор клапана по его внутренней характеристике необходимо проводить так, чтобы его регулировочные способности сохранялись оптимальными и неизменными независимо от изменения нагрузки в рабочем диапазоне. На практике разные участки в области регулирования стараются сделать линейными в рабочем диапазоне технологического процесса. Тогда и усиление установленного клапана будет наиболее вероятно постоянным в рабочем диапазоне технологического процесса.

Для относительного усиления установленного клапана действительно правило, согласно которому в диапазоне регулирования усиление должно быть не более 0,5, а его изменение может быть лишь немногим более 2. Если установочное усиление не отвечает названным условиям, необходимо вместе с изготовителем тщательно исследовать динамику регулирующей способности во всем диапазоне регулирования. Если усиление данного клапана слишком низкое, высокое или оно сильно колеблется в рабочем диапазоне технологического процесса, это, как правило, доставляет трудности в отношении регулирующих устройств. С другой стороны, слишком высокое усиление клапана затрудняет точность регулирования, так как для степени погрешности в величине потока клапана действительна формула

DQr=Gdhr. (4)

Т.е. относительная степень погрешности по потоку есть усиление, умноженное на степень погрешности открытия клапана.

На рис. 2.1.10. представлена соответственно рис.2.1.9 кривая установочного усиления регулирующего клапана Q-ball. Из рис. 2.1.10 видно, что благодаря внутренней кривой клапана Q-ball достигается почти постоянное усиление в рабочем диапазоне регулирующего клапана. Кроме того, низкое усиление означает на практике прекрасную точность регулирования.

Рис. 2.1.10. Кривая установленного усиления регулирующего клапана Q-ball (компания Метсо)

Таким образом, понимая особенности процесса при протекании рабочих сред через клапан, и характеристики регулирования, построенные на основе этого знания, уже на первоначальном этапе можно добиться более оптимального выбора клапана с высокими характеристиками, и соответственно, его более высокой эффективности в работе.

2.2. Программа перерасчета регулирующих клапанов при помощи расчетных программ

ОБОСНОВАНИЕ

За время работы фабрики производится множество усовершенствований, модернизаций локальных установок клапанов и арматуры, отличающихся от заданных в проекте. Постоянные изменения ассортимента и граммажа бумаг, а так же переходы с одного вида бумаг на другой отрицательно сказываются на работе клапанов, рассчитанных на определенный вид выпускаемых бумаг. При этом не рассматриваются вопросы оптимизации работы клапанов с возможностью повышения надежности, в т.ч. метрологической надежности. Это может быть наиболее характерно для предприятий, выпускающих небольшие партии бумаг, где клапаны работают в условиях частых переходных режимов.

Как правило, модернизируется только оборудование, а арматура остается неизменной и заказы арматуры на замену производятся по спецификациям, не отражающим современных технических решений, закладываемых компаниями в новые образцы арматуры. Учитывая, что на многих предприятиях установлено множество клапанов METSO AUTOMATION (Neles, Jamesbury), существует возможность технического аудита арматуры и перерасчета ее параметров в соответствии с сегодняшним состоянием дел и планами по развитию предприятия. План работ по техническому аудиту клапанов и арматуры приведен ниже:

ПЛАН РАБОТЫ ПО ТЕХНИЧЕСКОМУ АУДИТУ КЛАПАНОВ И АРМАТУРЫ

1. Совместно со специалистами предприятия (технологи, КИП и механики) проводится анализ статистических данных контроля качества по всем технологическим потокам с целью выделения наиболее проблемных участков. Статистические данные предоставляются предприятием.

2. По результатам анализа проводится перерасчет клапанов по расчетной программе NELPROF на каждом из таких участков, с целью приведения их в соответствие с сегодняшними характеристиками и предоставляются варианты установки клапанов взамен установленных. Дополнительно проводится расчет эффективности работы клапанов в условиях частой смены граммажа, композиции и производительности. По результатам перерасчета представляется отчет.

3. По результатам проведенного анализа представляются предложения по совершенствованию наиболее критических клапанов, которые помогут устранить слабые места и повысить возможности регулирования процесса. Представляются предложения по повышению метрологической надежности и калибровке позиционирования регулирующих клапанов на более жесткие допуска по процессу.

4. Для анализа состояния установленных клапанов, проводится диагностика при помощи программы FIELD CARE. На основании снятых трендов будет получена полная картина состояния клапана, его работоспособности и подготовлены предложения по их замене, приобретению запчастей, а также рассчитан остаточный ресурс клапанов и арматуры.

5. На основе систематизации проведенного анализа разрабатывается программа повышения эффективности клапанного хозяйства, которая может быть использована в дальнейшем для планов технического перевооружения.

6. По результатам аудита поставляются новые клапаны взамен устаревших по программе обмена, которая подразумевает обмен устаревших клапанов на новые с использованием корпуса старого клапана. При этом возможно существенное уменьшение стоимости клапана.

2.3. Программа повышения точности регулирования

Точность регулирования, безусловно, является одним из наиболее важных показателей качества процесса и напрямую связано с качеством готовой продукции. Однако, когда требуется обосновать, почему нужно рассчитывать точность контуров и погрешности, а также, учитывая взаимосвязь между контурами, просчитать накопление ошибки и возможности их снижения уже на этапе проектирования, то решить эту задачу практически никто из специалистов по КИП, арматуре или технологов не имеют возможности. Тем более никто на предприятиях не сравнивает заданные погрешности по контурам с точностью, требуемой по технологическому процессу. Таким образом, выясняется, что при поставке оборудования в проектные решения закладываются исходные данные по оборудованию без просчета возможностей повышения точности процесса, и сам процесс на этапе проектирования, как правило, не оптимизируется по критерию снижения погрешности регулирования. В то же время, такие расчеты позволили бы уже на этапе проектирования выявить критические контуры регулирования и дать по ним более эффективные решения с повышением стабильности, точности и качества технологического процесса. В программе мы попытаемся обосновать необходимость проведения таких расчетов и оптимизации как уже действующего производства, так и при проектировании.

ПОЛОЖЕНИЯ ТЕОРИИ ТОЧНОСТИ ДЛЯ НЕПРЕРЫВНОГО ПРОЦЕССА ПРОИЗВОДСТВА ЦЕЛЛЮЛОЗЫ И БУМАГИ

Обычно, когда технологи говорят о процессе, то подчеркивается важность экспериментального опробывания, пилотных испытаний, накопления статистических данных по результатам первичной эксплуатации. Это важно потому, что при переходных условиях или, пока еще процесс не стабилизировался и не вышел на режим, говорить о возможности оптимизации не приходится. Для разрешения ситуации приходится рассматривать возможные погрешности на основе прошлого опыта. Например, по опыту выделяют критические контуры регулирования и оценивают их с точки зрения вероятности изменения и замены регулирующих органов на более точные. Для ЦБП проблема осложняется еще и тем, что сами контуры регулирования по критерию критичности могут быть связаны не только с качеством выходных характеристик, но и с поддержанием множества вспомогательных или дополнительных характеристик, например, косвенных. Также должны учитываться показатели надежности, долговечности и долговременной точности регулирования, которую по-другому можно назвать"метрологической надежностью".

В процессе производства целлюлозы, бумаги, как и других химических и гидромеханических процессов, действуют множество факторов. Сложность их взаимодействия приводит к традиционному взгляду, что оценить точность регулирования невозможно. Но есть ряд приборов и инструментов, которые позволяют перевести неопределенность, рождающуюся в процессе, в более структуризованные формы, как за счет автоматических анализаторов, так и специальных приборов. Например, при оценке полосчастости картона в поперечном направлении эффективно используются приборы типа SCANPRO. Благодаря математическому аппарату, заложенному в них, они разлагают спектр пульсаций в ряды Фурье, после чего появляется ясная возможность сравнивать их с пульсациями, задаваемыми конкретными узлами. Например, самые большие пульсации перед напорным ящиком могут задавать смесительные насосы, но в еще большей степени — напорные сортировки. А среди рассматриваемых узлов, задающих пульсации, могут выступать и вакуумные системы, и вибрация трубопроводов, и колебания валов и др. Говоря языком теории точности, в этом случае удается выделить из генеральной совокупности элементов смесь распределений и после их анализа в отдельности синтезировать общую картину точности по пульсациям.

Таким же образом можно рассматривать и более сложные процессы с множеством входных и выходных характеристик. Для этих целей все чаще должны использоваться средства САПР, синтезирующие различные сочетания накопления ошибок и погрешности в последовательном и параллельном проведении технологического процесса и оптимизирующие контуры регулирования по критерию минимальной погрешности заданных технологических параметров. Такой подход позволяет решать задачи синтеза размерных цепей допусков технологического процесса более совершенными средствами и оптимизировать их для конкретной постановки задачи.

Так, по результатам «размерного» анализа накопления погрешностей можно выделить критические контуры, с увеличивающимися звеньями и высоким передаточным отношением и оптимизировать их, предложив более точное исполнение клапана, с более совершенным приводом и позиционером. При проверке спецификации клапанов при проектировании технологической схемы критические участки выделяются и рассматриваются отдельно. Для них производится перерасчет с целью повышения точности и метрологической надежности. Для крупных предприятий ЦБП, где используются клапаны NELES, это эффективно еще и с точки зрения унификации и сервисного обслуживания. По мнению авторов, такой подход эффективен при рассмотрении проблемы точности в контексте надежности и коммерческий эффективности, например, при замене спецификации клапанов, предлагаемых компаниями, специализирующихся на какой-либо части технологического процесса (GL&V,KADANT-LAMORT, NOSS, LARIO ENERGY, KVAERNER и др.), так и отечественных производителей, способных выпускать бумагоделательные машины и оборудование для ЦБП (ПЕТРОЗАВОДСКМАШ, ДНЕПРОТЯЖБУММАШ, НОВОСИБИРСКЭНЕРГОМАШ и др.).

Говоря о традиционных способах устранения отклонений процесса, обычно приводят возможности системы автоматизации. Однако, это не всегда так. Если, например, погрешность выполнения задания регулирующим клапаном выше допуска, задаваемого системой автоматизации, то клапан не сможет выполнять задание в точности. Результатом станет, как большая колебательность процесса, так и неэффективная автоколебательная работа самого клапана.

ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ

Рассмотрим для начала основные определения, которые необходимы для рассмотрения процессов регулирования с точки зрения теории точности. Основными участками рассмотрения будут точность при проектировании технологических схем, контур регулирования и сам клапан в эксплуатации, измерении и контроле.

Выходные характеристики — это те показатели, которые обеспечивают необходимый уровень работоспособности, долговечности, надежности, ремонтопригодности, устойчивости и других критериев качества. Они отличаются от служебных или эксплуатационных характеристик, поскольку этот показатель шире и включает и негативные выходные характеристики, возникающие в процессе эксплуатации. Например, спектр частот и собственная виброактивность клапана могут быть названы только как выходная характеристика, поскольку ни служебной, ни эксплуатационной не являются.

Выходные характеристики — это допуск на параметры технологического процесса, зависящий от клапана, например, для клапана веса м2 — это допуск на вес м2. Для технологической схемы с участием клапанов и ограничениями на минимальное влияние других факторов — это может быть дополнительно и допуск на механические свойства бумаги. В этом случае необходимо рассмотреть другие контуры регулирования, вносящие свой вклад в формирование свойства. Например, зная влияние крахмала на свойства бумаги, можно рассмотреть, какие контуры регулирования влияют на процесс, и как погрешность регулирования выводит процесс за допустимые рамки, приводя либо к избыточности добавки химикатов, либо к ухудшению качества бумаги или обрывам. Для этих целей хорошо работает теория вкладов в теории точности. Также могут быть рассчитаны уравнения регрессии или найдены экстремумы свойств. Говоря языком химии, могут быть найдены участки допусков, максимально сочетающиеся с центром процесса, где свойства максимальны и эффективность регулирования наиболее высока и можно уйти от краев процесса, где погрешность высока, а качество выполнения химического процесса, реакции и др. минимально.

Функциональные параметры — это физико-химические параметры, которые оказывают влияние на выходные характеристики. Например, к числу выходных характеристик клапана могут быть отнесены секундный расход, давление, концентрация, работа на переходных режимах, потери на гидравлическое сопротивление. Функциональными параметрами клапана, обеспечивающими этот процесс, являются степень линеаризации, пропускная способность, угол открытия, динамический гистерезис, мертвая зона, мера отклонения от линейности и др.

Функциональные параметры могут быть регулируемыми или нерегулируемыми, а также невыявленными. Они обычно называются шумом. Регулируемые и измеряемые параметры для клапанов могут быть оценены при помощи «алмазной» диаграммы, показываемой программой диагностики FIELDCARE. Они реализуются при помощи сенсоров, установленных в позиционер.

Основные функциональные параметры — это те параметры, погрешности которых оказывают наибольшее влияние на погрешности выходных характеристик.

Исходные зависимости — это соотношения между функциональными параметрами и выходными характеристиками, получаемыми на основе опыта производства или подразумеваемыми и обычно задаваемые технологией. Именно они являются исходными для расчета допусков и прогнозирования погрешностей. Так, для анализа погрешностей контуров в системе массоподготовки бумагоделательной машины исходные зависимости определяются в целом материальным балансом.

Увеличивающие функциональные параметры — с их увеличением выходная характеристика увеличивается, уменьшающие — те, с увеличением которых выходная характеристика уменьшается. Примером увеличивающего звена является, например, узел разбавления, когда погрешность подачи осветленной воды на разбавление будет многократно увеличена на выходе из этого звена и проявится, например, в значительном перерасходе воды. Пример уменьшающего звена в ЦБП — сгуститель.

Здесь же важно показать, как появляется передаточное отношение (коэффициент усиления) — величина, указывающая направление и интенсивность влияния функционального параметра на выходную характеристику. С точки зрения системы автоматизации передаточное отношение может быть обозначено как коэффициент влияния или коэффициент чувствительности. Этот же параметр может косвенно указать на критический контур регулирования, где относительное передаточное отношение (передаточное отношение, отнесенное к математическому ожиданию) будет значительно больше или меньше 1.

Коэффициент точности — покажет соотношение между полем рассеяния и допуском при заданной или полученной по результатам контроля качества функции плотности вероятности. То, что поле рассеяния не равно допуску, легко видеть при сравнении данных контроля качества, вычислении истинного среднего значения величины, ее математического ожидания и допуска. В этом случае, повышение точности может позволить разделить допуска на несколько дополнительных, например, изменив сортность бумаги по граммажу или разбив на подсорта бумаги в рамках одного сорта. При этом можно получить значительно более эффективное качество выполнения процесса и маркетинговые преимущества. Если параметров несколько, то поле рассеяния легко видно на диаграмме допусков. Когда измеренное качество появляется в виде поля и не обязательно занимает равномерно все поле допусков, а может сосредотачиваться на одном из углов диаграммы. В этом случае технологу следует задуматься, куда и почему «плывет» процесс, отдаляясь от своего центра, заданного допусками. Примерно так определяет точность выполнения процесса компания STORA ENSO ANYALANKOSKI, Финляндия, где задана целевая область диаграммы — вес м2 — разрывная длина и результаты измерений он-лайн демонстрируют изменение качества в процессе. Эти данные используют для регулирования контуров, ответственных за ту часть процесса, которая вносит наибольший вклад в формирование показателя веса м2 и разрывной длины.

Чтобы получить данные и уметь уже на стадии проектирования смоделировать точность, необходимо провести оценку точности. Оценка точности может состоять из двух этапов:

— расчет допусков по результатам расчета погрешностей, задаваемых производителем регулирующих клапанов;

— сравнение с результатами опытной эксплуатации и параметрами технологического процесса, его допусками;

— выявление критических участков по результатам сравнения.

Оценка точности предполагает и риски, например, вероятность отвергнуть правильное решение (риск 1 рода) и вероятность принять неправильное решение (риск 2 рода). Для оценки риска 1 рода, используют критерий значимости, задаваемый по следующим значениям — а=0,05; 0,01; 0,0027. Чем ниже значение «а», тем выше точность.

Тем не менее, следует учесть, что слишком высокое повышение точности может привести к сбоям. Так, например, задание слишком малого отклонения для целей регулирования может привести к накоплению ошибки ПИД регулятора и самопроизвольному отключению цифрового позиционера.

РАСЧЕТНЫЕ ЗАДАЧИ ТОЧНОСТИ КОНТУРОВ РЕГУЛИРОВАНИЯ ПРИ ПРОЕКТИРОВАНИИ ТЕХНОЛОГИЧЕСКИХ СХЕМ ЦБП

Уравнения материального баланса, дающие основные расчетные характеристики технологического процесса, не учитывают погрешностей регулирования процесса, взаимного влияния сопряженных контуров, накопления ошибки и др. В то же время, эти погрешности влияют на точность процесса, качество конечного и промежуточных продуктов, затраты энергии, трудности с компенсацией погрешностей средствами системы автоматизации. В точных процессах и критических контурах регулирования эти проблемы могут оказаться весьма существенными. В целом можно сказать, что нестабильность процесса может снизить показатели совершенства технологического процесса или производительности до 10%.

В то же время технологический регламент, рассчитываемый по условиям материального баланса, задает, как правило, значительно больший возможный допуск на процесс, чтобы поле рассеяния параметров оказалось внутри допуска. Но именно благодаря этому создается возможность оптимизации.

Учитывая многообразие связей между параметрами в ходе реализации технологического процесса, статистические выходные характеристики могут подсказать и наличие неучтенных факторов. А после анализа таких параметров можно будет задавать такой параметр, и установить измерительный контур регулирования для осуществления этого параметра. Так, вместе с уравнениями материального баланса желательно учитывать и погрешности параметров технологического процесса — например, давления, уровня вакуума, концентрации, пульсаций расхода на сами показатели материального баланса. Трудности состоят в том, что иногда параметры и выходные характеристики формируются в ходе технологического процесса и не могут быть проконтролированы и заданы изначально. Сюда же относится и проблема нелинейности исходных зависимостей, что может обусловить недопустимость их линеаризации.

В целом, задача расчета погрешностей контуров регулирования сводится к следующей схеме:

1. Аудит технологической схемы, сбор расчетных данных по процессу и расчет погрешностей по контурам регулирования. При наличии устоявшейся технологической схемы и вышедшего на режим технологического процесса снятие при помощи программы FIELD CARE показателей процесса и алмазной диаграммы. Установление трендов процесса.

2. Анализ технологической схемы с учетом данных п.1. Анализ, расчет и прогнозирование погрешностей элементов входной и выходной информации, характеристики их распределений и зависимостей между ними. Выделение быстродействующих возмущений, например, колебаний параметров процесса и медленнодействующих факторов (зарастание, износ и др.). Расчет точности технологического процесса на различных этапах жизни контура регулирования. Расчет точности контура регулирования при различной заданной производительности и др. Расчет точности, как по одному доминирующему фактору, так и по нескольким.

3. Совершенствование технологической схемы на основе расчета погрешностей по процессу и накопления критических ошибок в процессе. Выделение критических контуров регулирования. Замена клапанов на более совершенные, с учетом анализа и синтеза точности.

Примером может стать расчет в программе NELPROF клапана веса м2. Так, задавая основную среду, входные параметры, и рассчитывая процесс при минимальных отклонениях концентрации, можно получить весьма существенные отклонения в весе м2 на конце бумагоделательной машины. Пример расчета по отклонениям процесса приведен ниже.

Пример. На сегодняшний день приборы измерения веса м2 бумаги обладают чувствительностью +-0,2%. Для выбора клапана необходим ряд данных с бумагоделательной машины: производительность, вес м2, размер привода, скорость машины, концентрация массы, особенности линии подачи сырья, параметры падения давления и, конечно, сорт бумаги. По программе Nelprof, разработанной компанией Metso automation, рассчитывается клапан, оптимально подходящий для данных условий. Пример в табл. 2.3.1. демонстрируется выбор клапана R — серии DN200. Случай 1 дает положение клапана при данных параметрах процесса. Случаи 2 и 3 показывают изменения скорости потока, вызванные изменением положения открытия клапана: 1 шаг для случая 2 и ½ шага для случая 3. Отметим, что NelesACE позволяет регулировать с точностью до +-0,014% около точки установки посредством полных шагов (импульсов) и до +-0,007% — полушагами. Таким образом, точность регулирования может быть повышена почти в 30 раз по отношению к первоначально заданной погрешности регулирования.

Табл. 2.3.1. Данные о процессе

Табл. 2.3.2. Характеристика процесса

Табл. 2.3.3. Расчетные параметры работы

Тем не менее факторы, которые необходимо учесть, весьма многообразны. Это и количество, и возможность связи между входными и выходными характеристиками, и степень определенности задачи. В этом случае выделяют доминирующие факторы и шум; линейные и нелинейные задачи и возможность линеаризации; случайность и неслучайность изменения функциональных и выходных характеристик и возможность задания математического аппарата. Примером может стать расчет для устранения перерегулирования в клапане веса м2 при переходе с одного сорта бумаги на другой. Параллельность и последовательность процесса также во многом определяют степень и скорость накопления ошибки. Результатом выделения последовательных связей может стать расчет погрешности, проходящей через все узлы сопряженных «танцующих» контуров регулирования. Для параллельно соединенных элементов — амплитудное накопление погрешности при сложении пульсаций характеристик каждого из них.

КЛАССИФИКАЦИЯ РАСЧЕТНЫХ ЗАДАЧ В ЗАВИСИМОСТИ ОТ НАЗНАЧЕНИЯ

1. Расчет предельно допустимых верхних и нижних отклонений

Расчет предельно допустимых верхних и нижних отклонений позволяет рассчитать допуски контура регулирования и допуски на процесс. Выделяются критические отклонения выходных характеристик, с которыми не должны совпадать рабочие выходные характеристики. Например, пульсации смесительного насоса, сложенные с пульсациями давления от напорных характеристик, не должны совпадать, поскольку при этом при их сложении на сеточной части образуются светлые поперечные полосы и промои волокна, а бумага будет иметь ослабленные поперечные сечения с низкими значениями по отношению к заданному весу м2 и, соответственно, ослабленные механические свойства самой бумаги.

Другим примером может стать критическое накопление погрешности с выходом выходной характеристики за пределы допуска. Это может быть работа клапана на верхнем пределе перепада давлений, за которым происходит критическое изменение характеристики регулирования из-за попадания в кавитационную область. При большой погрешности измерения попадание в эту область будет невыявленным и частым, что приведет к появлению дополнительных возмущений в процессе. Еще одним примером будет контур регулирования осветленной воды в связи с весом м2. Говорят специалисты KRUGER WAYGAMATIK, Канада:

«Комбинат имеет следующие показатели:

— Новая бумагоделательная машина для выпуска легкомелованных видов бумаг.

— Коммуникации, основанные на HART протоколе.

— Основная система управления — Metso DNA

— Основное обеспечение — Metso Automation, (регулирующие и отсечные клапаны, датчики концентрации и анализаторы), АВВ — датчики температуры, давления и расхода, Е+Н — расходомеры, Vega — регуляторы давления, Rosemount (управление температурой и давлением от HART DTM).

Устранение малых вариаций отмечалось при отклонении от заданного перемещения на клапане подачи осветленной воды. Отклонение до 0,8% обычно не так важно, но в этом случае оно имело очень большой эффект на вес м2 бумаги. После регулирования, установки цифрового позиционера с возможностью самодиагностики и увеличения надежности измерений, отклонение перемещения от заданного было уменьшено до 0,3% и вариации веса м2 были соответственно уменьшены. Сейчас значение тревожного сигнала при отклонении перемещения от заданного для этого клапана установлено на величине не более 0,3%.»

2. Расчет систематических погрешностей выходных характеристик, обусловленных применяемыми узлами бумагоделательного оборудования.

3. Задачи синтеза точности. По найденным или заданным из опыта, аналогии или по техническим требованиям значениям предельных отклонений выходных характеристик проводится расчет необходимых предельных верхних и нижних отклонений и, следовательно, допусков входной информации. Такая задача наиболее характерна при проектировании контуров регулирования.

4. Задача анализа точности по значениям предельных отклонений показателей входной информации; прогноз значений возможных предельных отклонений или полей рассеяния выходных характеристик.

5. Задача отстройки от критических состояний. Это расчет необходимых малых отклонений входных характеристик для отстройки выходных характеристик на заданную величину от нежелательного уровня или критических состояний. Задачами являются, как отстройка от резонанса амплитуд пульсаций концентрации, давления и др., снижение виброактивности самого клапана, удерживание показателей бумаги, например, веса м2 в характерных более жестких допусках с выделением подсортов бумаги. Сюда же относится и задача доводки средних значений выходных характеристик до определенного уровня без изменения номинальных значений входных параметров. Одной из них может быть нахождение критических состояний процесса, при которых регулирующие клапаны выходят за пределы наиболее эффективного диапазона регулирования (50-70%). На языке теории вероятности такие задачи называются «задачами преднамеренного смещения распределений».

6. Расчет погрешностей выходной информации, обусловленной действием отклонений внешних возмущений от заданного уровня. Как правило, эти задачи относятся к возмущениям, возникающим в процессе эксплуатации оборудования. Вполне правомерно, чтобы при решении задач анализа и синтеза точности принималось во внимание влияние внешних возмущений, износа и старения еще на стадии проектирования изделия. Для клапанов, установленных на определенной технологической линии, эта задача означает найти такое сочетание погрешностей, при которых процесс выходит за пределы допусков.

Для решения этих задач должны быть решены дополнительные задачи:

— Отбор и ранжирование функциональных параметров, выявление взаимосвязей между ними, формирование исходных зависимостей. Для бумагоделательной машины и участка массоподготовки ими может быть в основном уравнение материального баланса.

— Установление законов распределения функциональных параметров и выходных характеристик.

— Определение оценок, ошибок и доверительных интервалов показателей, полученных экспериментально.

— Оптимизация допусков. Нахождение экстремума, максимума — минимума выходной характеристики или параметра технологического процесса. Практические результаты — это получение таких значений предельных отклонений, которые обеспечивают минимальную величину поля рассеяния, определяют коэффициент относительного рассеяния и относительной асимметрии выходной характеристики.

Кроме того, должен быть выбран метод оценки точности. Для предприятий ЦБП, очевидно, наиболее эффективны экспериментальные методы. Из них наиболее эффективен метод регрессий по результатам активного или пассивного экспериментов. В случае установившегося производства может быть обследована выборка качественных показателей достаточно большого объема. Измеряются значения выходных характеристик, входных параметров и внешних возмущений. Затем определяются статистические характеристики, функции плотности вероятности и законы распределения, коэффициенты корреляции между входными параметрами и выходными характеристиками. Далее определяются комплексы показателей для внешних возмущений и их связей между собой и с выходными характеристиками. Зная модели плотности вероятности, можно определить поля рассеяния, верхние, нижние отклонения, коэффициенты относительного рассеяния, коэффициенты относительной асимметрии. Имея набор перечисленных величин, конструируются формулы для расчета точности.

В жизни метод может выглядеть следующим образом. От отдела качества получают статистические данные по процессу. Альтернативно данные можно получить из диаграмм процесса из системы автоматизации. Рассчитываются дисперсии и определяются отклонения. Данные сравниваются с дисперсиями по процессу. Выделяются критические участки процесса, вносящие максимальный вклад в дисперсию. Производится анализ по контурам. На основе анализа принимается решение о замене существующих и внедрении наиболее точных контуров регулирования. Рассчитывается эффективность через ужесточение допусков на процесс, снижение норм расхода и экономическая эффективность в целом.

Все методы в полном объеме реализуются только на компьютере. Построенные при помощи указанных методов обобщенные модели распределения особенно удобны при выполнении автоматического регулирования процессов с меняющимися законами распределения и, очевидно, могут быть вложены в виде дополнительного программного обеспечения в систему автоматизации.

Кроме этого, в ходе выполнения технологического процесса и периодических поднастроек, исходные заданные значения регулирования могут искажаться. В этом случае включение программы (например, NELPROF) в систему автоматического регулирования с постоянным пересчетом клапанов на текущее значение технологического процесса будет четче выдавать общую картину диапазона регулирования и показывать места выхода текущих характеристик за пределы диапазона регулирования клапана. В частности, такие задачи наиболее характерны при частой смене производительности.

Исходные заданные значения регулирования искажаются и из-за расширения погрешностей регулирования и\или из-за износа самого клапана. В качестве примера можно привести последовательность выявления проблемы точности, как в процессе, так и в самом клапане веса м2. Пусть контролируемым параметром будет вес м2 рулона. После отладки процесса берется выборка рулонов, и оцениваются результаты измерения веса м2 каждого рулонов. Получаем выборку. Спустя заданное время проводим эту процедуру второй раз. Результаты измерений смешиваются, и каждому значению присваивается ранг. Вычисляются суммы рангов для каждой из выборок, определяются значения критерия Уилкоксона и сравниваются со значениями для риска 1-го рода. Выявляется разница. Если она существенна, что это означает, что необходимо вмешаться в процесс, т.к. что-то в распределении веса м2 рулонов изменилось, хотя брак еще не появился. Произведя еще вычисления, можно установить, что именно изменилось, в какой из характеристик процесса нарастает опасная тенденция. Ими может быть уровень настройки, о чем можно судить по изменению среднего арифметического, разброс значений, т.е. точность отслеживания веса м2, о чем можно судить по изменению дисперсии.

Для регулирующих клапанов особенно важно, чтобы процесс находился в наиболее эффективной линейной части регулирования. Его можно назвать центром процесса или распределения, и он соответствует традиционно задаваемому диапазону регулирования 50-70%. Регулирование на этом участке будет наиболее свободно от погрешностей и будет ухудшаться с приближением к выходу за его пределы. Это также означает, что в случае ухода от центра процесса (распределения) и приближением к его концам будет появляться дополнительный разброс значений. И это также означает, что необходимо поддерживать настройку клапана и удержание диапазона регулирования в области центра процесса. В случае выхода клапана из зоны эффективного регулирования с максимальной линеаризацией, и работой в диапазоне ниже 40% или более 70%, отклонения в регулируемых параметрах могут иметь критические значения. Расчеты погрешности по левой и правой границе диапазона регулирования дадут точные значения общей погрешности и помогут более точно сформировать требования к точности вблизи этих границ.

Учитывая частые изменения производительности, использование программы NELPROF в режиме он-лайн поможет производству и технологам вовремя увидеть проблемы нарастания погрешности в связи с выходом за нижнюю или верхнюю границу пропускной характеристики. Так, по данным аудита одного из ЦБК, свыше 50% регулирующих клапанов работало при угле открытия ниже 40%, что было главной проблемой накопления ошибок при регулировании. В случае если бы в системе автоматизации была бы установлена программа NELPROF, технологи смогли бы выявить проблему значительно раньше и задать ограничения по процессу или снижению производительности.

Таким образом, уравнения погрешностей или их совокупностей, если затрагиваются несколько выходных характеристик, могут служить расчетным аппаратом при решении задач отстройки системы от нежелательных уровней выходных характеристик, либо задачи доводки последних до необходимой величины.

При моделировании точности необходимо учесть, что особенное влияние на поле рассеяния параметров имеет динамика протекания технологического процесса. Чем выше скорость и производительность, чем меньше устройств сглаживания, резервирования или транспортных звеньев, также способных сглаживать погрешности, тем выше неустойчивость регулирования и колебательность процесса. При этом следует принять во внимание, что смещается как математическое ожидание характеристики под действием систематических факторов (износ, разбалтывание соединений, люфты в клапане, другие возмущающие факторы), так и случайные факторы при поднастройке контура регулирования и самого клапана. Растет дисперсия вследствие действия систематических факторов, например, динамических отклонений и, соответственно, динамической расстройки контура, так и случайных факторов.

Это также означает, что необходим определенный запас точности настройки, как минимум, между двумя ППР, и должна рассчитываться зона безопасного смещения математического ожидания вырабатываемой совокупности и роста ее дисперсии. В этом случае в «алмазной диаграмме» программы FIELDCARE можно предусмотреть две основные части поля рассеяния — большую часть, равную вероятностной сумме случайных погрешностей, и меньшую, — зону безопасного смещения математического ожидания и роста ее дисперсии, или зону запаса точности. Они, как понятно, должны быть меньше поля допуска. В анализе, проводимом специалистами по точности (ИПМАШ) показывается, что при применении, например, унифицированного метода, чем точнее выполняется обработка (точнее работает контур регулирования), тем создается большая возможность увеличения допусков. Этот принцип реализуется только при автоматическом непрерывном регулировании точности. Как уже показывалось выше, автоматический перерасчет клапанов он-лайн и встройка тревожных сигналов в системы автоматизации, может стать первым приемом повышения эффективности качества регулирования.

Если при моделировании используются различные гидравлические или электрофизические аналогии, то появляется возможность определить влияние дополнительных малых параметров на динамику системы. При разработке алгоритмов, они также могут быть включены в систему автоматизации процесса. Такие модели могут быть наиболее полезны при анализе точности сложных технологических схем, состоящих из большого числа узлов, соединенных последовательно или содержащих несколько разветвленных схем из таких последовательных цепочек. Требуется расчет точности контура регулирования каждого элемента и точности взаимного влияния этих контуров, для того, чтобы гарантировать функциональную точность процесса. Кроме того, модели должны учитывать изменение погрешностей во время эксплуатации. Ряд таких работ проводится в КЦ Промконсалт, ВШТЭ, Санкт-Петербург. В результате моделирования одним из первых результатов может быть предсказание того, достигнет ли контур требуемой точности, будут ли сбои, необходимо ли перепроектировать сам контур.

ПРИМЕНЕНИЕ ТЕОРИИ ВКЛАДОВ ДЛЯ АНАЛИЗА И СИНТЕЗА ТОЧНОСТИ

Вклад — эта мера влияния данного фактора на тот или иной показатель точности выходной характеристики. По-видимому, этот метод наиболее характерен для расчета погрешностей процессов технологических схем, как уже было продемонстрировано при изучении светлых ослабленных полос на полотне бумаги при помощи приборов компании Feltri Marone. При этом вклады могут быть следующими:

1. абсолютный вклад фактора, включая и возмущающие, в математическое ожидание или среднее значение;

2. относительный вклад того же фактора;

3. относительный вклад свободного члена исходной модели (погрешности линеаризации, моделирования, полноты учета входных параметров);

4. относительный вклад дисперсии фактора в дисперсию выходной характеристики;

5. относительный вклад поля рассеяния фактора в поле рассеяния выходной характеристики

6. относительный вклад совместного влияния двух дисперсий в дисперсию выходной характеристики, поля рассеяния;

7. относительный вклад отклонения от среднего значения факторов в отклонение от среднего значения выходной характеристики.

Методология рассмотрения точности по методу вкладов позволяет решать следующие задачи:

— ранжирование факторов по степени их влияния на выходные характеристики;

— оценка вклада в линеаризованную область, что позволяет анализировать роль неопознанных, неучтенных факторов и возмущений, а также погрешностей моделирования;

— оценка технических требований к конструкции и процессам, а также их уточнение;

— совершенствование управления технологическим процессом.

Следует отметить, что вклад в среднее значение может быть мал, но в дисперсию может быть доминирующим. Это означает, что при проектировании технологических схем необходимо учитывать все вклады контуров регулирования и в алгоритмах управления производством предусматривать то же самое. Включение в технические требования на клапан только основных показателей, которые оказывают доминирующее влияние на номинальное значение выходной характеристики, как это, к сожалению, наблюдается в практике проектных организаций, может привести к утрате контроля за полем рассеяния факторов, оказывающих на него существенное влияние. Это напрямую ведет к непредсказуемому колебанию уровня доли качественного выполнения процесса, что наблюдается в целлюлозно-бумажном производстве.

АНАЛИЗ КОНТУРА РЕГУЛИРОВАНИЯ И РЕГУЛИРУЮЩИХ КЛАПАНОВ С УЧЕТОМ ФАКТОРА ВРЕМЕНИ И ЭКСПЛУАТАЦИОННЫХ ИЗМЕНЕНИЙ

При проектировании должны учитываться, как период эксплуатации, так и изменение ремонтных размеров, для чего необходимо устанавливать связь качества изготовления и сборки клапана с последующим качеством работы его при эксплуатации. Для этих целей задаются функциональные параметры, эксплуатационные показатели и связь между ними. Пределы изменения эксплуатационного показателя, например, гистерезиса, определяется допусками изготовления деталей. При эксплуатации параметры клапана изменяются из-за износа или возмущений и величину параметра через время эксплуатации можно записать уравнениями, где должна быть добавлена скорость изменения параметра. Методологически это делается при помощи использования данных трендов с «Алмазной диаграммы» программы FIELD CARE компании Метсо Автоматизация или программно-диагностических комплексов других компаний.

Расчет или аппроксимация данных, расчет уравнений регрессии процесса падения точности позволяет задавать категории допусков, принимать определенные показатели дисперсий, назначать допуска на входные и функциональные параметры, определять средний срок службы.

Проведенный обзор показывает, как внимательное отношение к контурам регулирования с точки зрения не только автоматизации процесса, но и повышения их точности и связи с технологией позволят добиваться более существенного роста качества технологического процесса. Шагами к этому является знание технологии, анализ технологических схем на предмет точности регулирования и знание особенностей поведения клапана с целью устранения колебательности процесса.

2.4. Программа"Арматура для критических узлов и контуров регулирования"

ПРОГРАММА"РАСЧЕТ КРИТИЧЕСКИХ КОНТУРОВ И УЧАСТКОВ РЕГУЛИРОВАНИЯ"

1. Критические контуры регулирования. Определение.

Критический контур регулирования — это контур, в котором небольшое изменение входных параметров приводит к недопустимо большому колебанию выходных параметров, которые не могут с достаточной степенью точности и в допустимых пределах устранены контуром регулирования, в основном из-за недостаточной точности регулирующего органа и исполнительных механизмов. Примеры. Наиболее часто — это контуры концентрации и разбавления, однако могут быть и другие контуры. Так, например, сгущение представляет собой с точки зрения контуров регулирования сложную динамическую взаимосвязь нескольких качественно различных контуров. Но в результате сгущения технологически могут быть утеряно качество массы, достигнутое на предыдущих ступенях технологического процесса, например, фракционированной массы. Это равносильно тому, как если все слить в один бак. Для получения того же качества среды после такого сгущения придется практически заново проводить регулирование.

2. Классификация критических контуров регулирования

2.1. по выполняемой функции

2.1.1. Контуры регулирования концентрации. Контуры регулирования концентрации являются, наверное, наиболее главными контурами в технологических процессах ЦБП. С приближением к напорному ящику, степень точности отработки заданий системы автоматизации должна повышаться. Вершиной является клапан веса м2, который должен обеспечивать максимальную точность регулирования.

2.1.2. Контуры разбавления. С контурами регулирования концентрации тесно связаны контуры разбавления, которые зачастую являются составной частью контура регулирования концентрации. Если входящим параметром является также масса с очень низкой концентрацией, то такой клапан разбавления будет иметь значительно более высокий уровень критичности по сравнению с обычным из-за резкого (неадекватного) роста расхода при минимальных изменениях концентрации. Часто контуры разбавления являются чисто технологическими, например, после сгустительных бассейнов, промывателей, но, в то же время, степень их важности и критичности будет определяться степенью воздействия на показатели концентрации.

2.1.3. Контуры поддержания расхода и давления. Эти контуры в максимальной степени связаны с параметрами самого клапана, поскольку сам современный принцип регулирования поворотными клапанами основан на взаимосвязи расхода и давления. В наибольшей степени их роль проявляется там, где необходимо поддерживать точные дифференциалы давления. Эти контуры характерны для напорных сортировок, вихревых очистителей, насосов и других элементов, где дифференциал давления на входе и выходе, а также степень сложности взаимосвязи между ними является одним из важнейших технологических параметров.

2.1.4. Контуры поддержания технологических параметров (температуры, рН, уровня и др.). Эти контуры являются важными для той части технологического процесса, где он в наибольшей степени зависит от них. Так, уровень в технологических емкостях может повлиять на весь процесс в целом, т.к. при резком его изменении они задают пульсацию давления по всей технологической цепочке и такую пульсацию трудно будет устранить самыми совершенными средствами регулирования. Известны случаи, когда резкий отбор воды для разбавления из технологической емкости, работающей, как на контур разбавления клапана веса м2, так и на другие ветки технологического оборудования приводил к неустранимым колебаниям веса м2. Контроль уровня может быть наиболее важен для контуров регулирования в гидроразбивателе, поскольку от него зависит, как степень концентрации массы уже на начальном этапе, так и скорость и эффективность разволокнения массы. Контуры регулирования температуры являются важными с точки зрения регулирования технологического процесса, зачастую являются частью более сложного контура регулирования. Так, при регулировании сушки, температура является непрямым параметром, и регулирование осуществляется за счет физической зависимости давления пара и его температуры или расхода. В контурах регулирования массы контур температуры в основном связан с контуром расхода или давления, обеспечивающими выполнение установленного сигнала по температуре.

2.2. по сложности технологического процесса. Конкретное формирование контуров регулирования связано с особенностью вписывания в технологический процесс. Условно можно разделить основной процесс бумагоделательного производства на массоподготовительное отделение и бумагоделательное производство.

2.2.1. Массоподготовительное отделение. В нем выделяется размольное отделение. Так, в узле доразбавления массы до требуемой концентрации перед размолом необходимо более точно, чем обычно, выдерживать требуемые значения концентрации и расхода. В противном случае, регулирование размола становится неустойчивым.

2.2.2. Узел подготовки и облагораживания массы. Учитывая, значительное потребление макулатуры внедрение узлов сортировки и очистки является свершившимся фактом. Для устойчивой и эффективной работы сортировки требуется точное выдерживание концентрации, разницы давлений и расхода. Дополнительно появляются специальные контуры регулирования выведения отходов, подачи химикатов (при флотации) или подготовки и подачи воздуха (также при флотации).

2.2.3. Напорный ящик. Напорный ящик следует выделить отдельно. Он является последним и самым важным технологическим элементом, после которого регулирование массы как таковой уже становится невозможно. Одним из важных критических контуров регулирования в нем является узел деаэрации, из-за возможности вскипания или вспенивания массы и ухудшения качества подготовленной массы в целом. Там должен использоваться специальный клапан с элементом Q-TRIM. Не менее важным является и узел машинной сортировки, технологически связанный с напорным ящиком. В нем все элементы, соприкасающиеся с массой должны в минимальной степени способствовать образованию узелков, сгустков, схватыванию фибрилл и др. Для этих целей используется специальная поворотная заслонка с полированной поверхностью. Как видно, не все контуры должны обладать высокой точностью. Приведенный пример показывает, что и сам клапан должен претерпевать значительные изменения для соответствия своей роли в технологическом процессе.

2.2.4. Контур регулирования веса м2. Без сомнения этот контур является ведущим и наиболее критическим контуром регулирования в бумагоделательном производстве. Он обладает наиболее совершенным клапаном, с минимальным гистерезисом, мертвой зоной, минимальными люфтами, собственной диагностикой и, в итоге, наиболее высокой точностью регулирования. Этот узел и дальше будет развиваться, специализируясь в основном только на повышении точности регулирования, повышении степени откликаемости, чтобы снимать и такие сложные виды отклонений как динамические, включая и пульсации.

2.2.5. Узел осветленной воды. Пример многих фабрик показывает, что при низких концентрациях воды даже небольшие отклонения приводят к значительной колебательности расхода. В качестве примера можно привести опыт канадской фабрики, где сначала на этом узле стоял клапан с погрешностью регулирования 0,8%. И это было бы нормально для обычного контура регулирования, но только не для узла осветленной воды. При таком значении погрешности изменения в расходе осветленной воды, возвращаемой на напорный ящик, была чрезвычайно высока и качественно регулировать вес м2 не удавалось из-за резких изменений параметров и непредсказуемой колебательности. Решением стало снижение погрешности до 0,3%. В результате отклонения в сопряженных контурах не выходили за пределы допуска технологического регламента. В него были внесены соответствующие изменения, установленное значение для этого контура регулирования составило менее 0,3%, что обеспечило хорошую и стабильную управляемость процесса.

2.2.6. Пароконденсатная система. В досушивающей секции разница в колебательности давления составляет до 15-30 кПа, наиболее характерных в ЦБП, при этом разбег температур на полотне может составлять до 100С. Точные клапаны смогут снизить этот разбег до 2 кПа, а разницу температур свести к минимуму. Результатом будут наиболее низкие значения разбега влажности, более высокое качество полотна, минимальные обрывы по причине переувлажненности, отсутствие коробления, лучшая наматываемость, стабильность реза на ПРС и пр. Другим примером является следующий. При подаче пара с конденсатом, который может достигать до 5% в паре, из-за падения давления в несовершенных клапанах может происходить вскипание пара из конденсата. Из-за значительной разницы в объеме между паром и водой, которая в сотни раз превышает плотность и объем воды, регулировать расход и давление пара — основные параметры регулирования температуры сушки, становится затруднительно. В конденсатных системах контуры, ответственные за перекачку и поддержание расхода и давления характеристик конденсата также являются важными, поскольку пар вторичного вскипания, образующийся в конденсатных системах из–за вскипания, резко меняет характеристики расхода и показатели регулирования.

2.3. По взаимосвязанности и влиянию контуров. Примеры. Главный паровой клапан. «Танцующие сопряженные контура».

2.4. По надежности. Надежность выполнения требований технологии часто становятся основным критерием к работе контуров и узлов регулирования. На опасных участках технологического процесса требования к надежности еще более повышаются и, соответственно транслируются и в трубопроводную арматуру. Такие показатели соблюдения уровня промышленной безопасности как SIL, MTBF, предъявляемые к регулирующим клапанам и клапанам с автоматическим управлением должны гарантировать, что процесс не выйдет из под контроля и будет безопасным. Расчет вероятности отказов для таких клапанов становится наиболее важным критерием для их включения в соответствующий контур управления. Примерами таких контуров являются:

— участки повышенной пульсации, гидравлических ударов;

— участки вероятной кавитации и эрозии и вибрации. В частности, преимущественной тенденцией развития арматуры для таких контуров является включение в спецификации клапанов повышенной компактности, низкой виброактивности для участков с повышенной вибрацией. В ряде случаев их рассчитывают на сейсмостойкость.

2.5. По специализированности контура. Примеры специализированных контуров показаны ниже:

— шаровая крышка,

— керамический клапан для подачи химикатов,

— клапаны для условий высокой цикличности,

— специальные клапаны для специальных сред,

— клапаны повышенной жесткости для условий высокой пульсации после насосов,

— клапан POCKET FEEDER для вывода отходов из грязевиков вихревых очистителей песочниц.

Для определения степени критичности контура проводятся расчеты по специальным методикам. Такие методики разрабатываются в ВШТЭ.

Компании предлагают свои часто неэффективные решения для таких контуров. В ответ на это заказчики требуют пилотной эксплуатации, по результатам которой только и готовы принять решение о приобретении. ЭОднако, при хорошем знании референцев эксплуатации можно сказать, что в ЦБП сложилась устойивая тенденция выбора наиболее эффективных решений для клапанов и арматуры. К таким решениям можно отнести выбор сегментных клапанов, цифровых позиционеров. мембранных приводов, антикавитационных элементов Q-TRIM, полевых шин PROFIBUS и FOUNDATION FIELD BUS.

Экономическая эффективность от применения специальных решений для критических контуров регулирования

Достижение экономической эффективности и умение считать экономическую эффективность является одной из важных проблем при доказательстве правоты решений по установке эффективных клапанов. Однако, существуют доказанные пример, показывающие как совершенная арматура позволяет улучшить качество регулирования в критических контурах. Примеры компании Метсо автоматизация приведены ниже.

1. Клапан веса м2. Достигается значительное повышение качества регулирования при использовании клапана регулирования веса м2 NELES ACE.

2. Узел осветленной воды. Замена обычного клапана на клапан подачи осветленной воды на разбавление на сегментный клапан способно снизить разброс с 0,8% до 0,3%.

3. Пароконденсатная система. Замена седельных клапанов на поворотные типа NELES ROTARY GLOBE улучшает выполнение условий точности регулирования по критичной для регулирования двухфазной среде.

4. Узел дозирования химикатов. Замена аналоговых позиционеров на цифровые и керамические клапаны для абразивных сред узла подачи химикатов и подготовки композиции снижает погрешность регулирования до 40-60% и сокращает затраты на сырье в суммах, выражаемых пятизначными цифрами.

5. Узлы циркуляционных схем. Основная проблема циркуляционных схем связана с их"отравлением"и загрязнениями. Примеры: гипсация, накопление отходов, налипание и др. Здесь эффективны клапаны с шабрирующими седлами и специальными посадками седел.

Перспективы использования клапанов в критических контурах регулирования

Основным вектором развития клапанов для критических контуров регулирования является разделение направления регулирования на клапаны в составе измерительных контуров и клапаны в составе элемента технологического процесса.

Клапаны в составе измерительного комплекса, как правило, отвечают следующим требованиям:

— Сочетание характеристик клапана с измерительным прибором в составе контура регулирования.

— Выделение специализированных и критических контуров регулирования.

— Автоповерка на эффективность регулирования по заданным технологическим параметрам в составе систем автоматизации.

— Создание информационно-измерительных комплексов с разработкой математического обеспечения, способного прогнозировать изменение процесса или погрешности. Пример — уже упоминавшийся нами клапан веса метра квадратного, имеющего специальную встроенную программу для устранения перерегулирования.

Клапаны в составе элемента технологического процесса и клапанного хозяйства имеют следующие тенденции развития:

— Усложнение клапанов и внедрение клапанных узлов.

— Повышение надежности клапанов.

— Интеллектуализация клапанов.

— Интегрирование клапанов в систему автоматизации.

— Снижение издержек за счет развития сервисного обслуживания.

В блок-вставке ниже мы приводим пример определения критических контуров регулирования ТЭС и показываем, как компания Метсо Автоматизация, пользуясь этим подходом, сумела предложить наиболее подходящие клапаны для критичных условий эксплуатации и регулирования.

БЛОК-ВСТАВКА

КРИТИЧЕСКИЕ КОНТУРЫ РЕГУЛИРОВАНИЯ ТЭС. ПРИМЕНЕНИЕ РЕГУЛИРУЮЩИХ КЛАПАНОВ NELES JAMESBURY В КРИТИЧЕСКИХ КОНТУРАХ РЕГУЛИРОВАНИЯ ТЭС.

ОСОБЕННОСТИ РАБОТЫ КОНТУРОВ РЕГУЛИРОВАНИЯ ТЭС

Цель работы ТЭС — отпуск теплового агента в виде пара или горячей воды с определенными параметрами расхода, температуры и обеспечение тепловодяного баланса. Дополнительными требованиями являются само качество воды, степень ее жесткости и насыщенность неконденсирующимися газами.

В работе ТЭС возникает множество возмущающих воздействий, от изменения погодных условий при работе на обогрев, до особенностей изменения работы теплопотребляющих агрегатов. Основными показателями, характеризующими технологический режим ТЭС, являются температура Т, напор, Н и расход Q теплового агента. Основным оборудованием с точки зрения регулирования являются:

— котлы, иногда их может быть несколько, работающих параллельно;

— сетевые насосы, обеспечивающие циркуляцию теплового агента;

— рециркуляционные насосы в линии рециркуляции воды от выхода с котлов на их вход;

— регулирующий клапан линии перепуска, подающий воду с выхода сетевых насосов непосредственно в напорный трубопровод с предварительным смешиванием с горячей водой после котлов;

— регулирующий клапан линии рециркуляции;

— насос подпитки в линии подпитки, обеспечивающий стабильное давление в обратном трубопроводе путем восполнения потерь теплового агента за счет подачи деаэрированной воды;

Дополнительными контурами являются контуры химводоочистки и водоподготовки, деаэрирования, подачи реагентов, удаления стоков, золоудаления, мазута и др.

Основных задач регулирования — две. Это регулирование выходных параметров пара и воды для потребителей и регулирование собственного тепловодяного баланса ТЭС.

Для решения первой задачи регулируются выходные параметры — Твых, Нвых, Qвых, в обратном трубопроводе Тобр, Нобр, Qобр.

Для решения второй задачи регулирования и обеспечения тепловодяного баланса регулируют следующие параметры:

Qк — расход воды через включенные котлы, что обеспечивает допустимый диапазон расходов через них.

Твх — температуру воды на входе в котлы с целью предотвращения образования конденсата на наружных поверхностях водяных труб внутри топок, так как конденсат является агрессивным.

Нобр — давление воды в обратном трубопроводе.

Структура контура регулирования может зависеть как от структуры самого объекта, так и от требований, предъявляемых к быстродействию в переходных режимах и точности в статических режимах.

В тоже время технологическую схему ТЭС можно представить в виде взаимосвязанных локальных контуров регулирования, где объект регулирования представляется апериодическим звеном со значительной нелинейностью и большими постоянными времени.

1. Контур регулирования температуры в напорном трубопроводе ТЭС

Контур регулирования температуры в напорном трубопроводе ТЭС включает в себя котел, коэффициент передачи которого по нагреву и постоянным времени являются переменными величинами, поскольку при разном числе параллельно работающих котлов температура в общем выходном коллекторе котлов Тк изменяется непропорционально управляющему воздействию. Например, при одном котле ПТВМ 50 включение одной горелки увеличивает Тк примерно на 4оС с общим временем регулирования 4-5 мин, а при двух котлах — на значительно меньшее значение за счет большего суммарного расхода воды в общем коллекторе.

Результирующая температура воды в сети Тс зависит от долевых значений расходов воды после котла Тк и обратной воды Тобр. Дополнительно учитывается функция смешения потоков воды, определяющая изменение температуры на разнице температур в обратном трубопроводе. В общем случае, она должна отражать также колебательность в упругой среде. Для датчика температуры главным фактором служит его собственная постоянная времени Тдат, составляющая до 10 сек.

Нагрузка ТЭС от теплопотребляющих агрегатов может быть описана передаточной функцией охлаждения теплового агента. Она также нелинейна, если за возмущающее воздействие принять изменение температуры в теплопотребляющем агрегате и расход теплового агента, зависящий от Тнагр и расхода. Постоянную времени охлаждения Тохл можно ориентировочно принимать 10-40 мин, но в каждом конкретном случае она зависит от протяженности и конфигурации теплопотребления и расхода теплового агента.

2. Контур регулирования напора на выходе с ТЭС

Контур регулирования напора Нвых можно представить в виде двух апериодических звеньев — сетевого насоса и гидравлических сопротивлений котлов и параллельной им линии перепуска. Обе передаточные функции будут нелинейны. Функции содержат квадратичную зависимость напора от частоты вращения. Постоянная времени Т определяется технологическими требованиями из условия плавного регулирования, ее значение составляет до 5 сек. Функция гидросопротивления нелинейна вследствие изменяющегося сопротивления в зависимости от угла открытия клапана линии перепуска. Динамические процессы узла смешения характеризуются очень малыми постоянными времени сжатия жидкой среды, и по сравнению с другими показателями регулирования при синтезе регуляторов ими можно пренебречь, т.е. считать функцию пропорциональной.

3. Контур регулирования давления в обратном трубопроводе

Контур предназначен для восполнения утечек теплового агента (подпитки сети). Его передаточная функция по управляющему воздействию нелинейна по той же причине, что и для сетевого насоса — вследствие квадратичной взаимозависимости напора и частоты вращения электропривода. Коэффициент передачи Кобр также зависит от температуры, влияющей на давление в замкнутом трубопроводе с постоянным объемом воды. Возмущающим воздействием на Нобр является также давление в напорном трубопроводе Н.

В стационарном режиме внешние возмущающие воздействия приводят к медленным процессам изменения давления, длительность которых измеряется минутами.

4. Контур регулирования температуры воды на входе в котлы

Передаточные функции этого контура отражают гидравлические процессы в узле соединения трубопроводов. Расход в линии рециркуляции Qрец и разность напоров Нрец и Нс связаны нелинейной функцией Фгидр, содержащей изменяющееся общее гидравлическое сопротивление параллельно включаемых котлов. В общем случае эта функция — колебательная с быстрым затуханием процесса.

Температура воды на входе в котлы Твх является функцией смешения двух потоков жидкости с разной температурой. Функция смешения одновременно зависит и от объемов потоков, и от изменяющихся независимо одна от другой их температур Тк и Тобр, что свидетельствует о неопределенной нелинейности. Как и в случае измерения температуры сетевой воды, постоянной времени, наиболее влияющей на процесс регулирования, является постоянная датчика температуры, составляющая примерно 10 сек.

Исполнительным механизмом служит рециркуляционный насос с регулирующим клапаном (или регулируемым электроприводом), являющийся апериодическим звеном с постоянной времени примерно 3-5 сек, устанавливаемой преднамеренно для исключения резких изменений суммы расходов Q.

5. Контур регулирования расхода воды через котлы

Контур включает в себя регулирующий клапан с нелинейной функцией, определяющей расход в зависимости от угла открытия и перепада давления на его входе и выходе, определяемой из паспортных характеристик, а также функцией интегрирования угла открытия по управляющему воздействию. Как правило, длительность полного открытия клапана составляет примерно 63 сек, т.е. постоянная времени составляет примерно 20 сек. Именно эта постоянная является определяющей и учитывается при построении системы регулирования. Для обеспечения устойчивости и исключения колебательности внешнего контура необходимо встраивать внутренний контур регулирования угла открытия клапана со своей передаточной функцией Фрег.

Из анализа следует, что все объекты локальных контуров связаны между собой и являются нелинейными, а постоянные времени передаточных функций некоторых из них определяются собственными постоянными времени исполнительных механизмов.

Зачастую трудно определить прямые показатели состояния теплопотребляющих объектов, пригодных для задачи регулирования выходных показателей регулирования ТЭС. Тем не менее, можно принять, что наиболее приемлемым способом регулирования будет упреждающее изменение выходных показателей ТЭС.

Обычно для регулирования применяют изменение числа включенных горелок, котлов, сетевых насосов. Вследствие нелинейности объекта регулирования и значительных постоянных времени апериодических звеньев такой способ на практике реализуется с помощью режимных карт и температурных графиков, составленных на основе опыта многолетней эксплуатации.

6. Контур регулирования температуры сетевой воды

При построении САУ температуры сетевой воды используется проверенный практикой способ управления — задание на температуру формируется по основному возмущающему воздействию Твозм и линеаризованному температурному графику, заложенному в АСУ ТП.

7. Контур регулирования давления воды в напорном трубопроводе

Контур предназначен для стабилизации напора Нс независимо от расхода в теплопотребляющем агрегате, температуры или других характеристик. При этом необходима стабилизация перепада давления в напорном и обратном трубопроводе, но давление в обратном трубопроводе стабилизируется самостоятельным контуром регулирования, поэтому, с целью исключения колебательности, целесообразно осуществлять регулирование по величине Нс.

В процессе работы ТЭС формируется практически стационарный процесс с медленно изменяющимися характеристиками, поэтому требование быстродействия пока не учитывается (за исключением устройств аварийной отсечки). Инструкциями по эксплуатации рекомендуется плавное, пошаговое воздействие на регулируемые показатели с визуальным контролем результатов. Это обусловлено как динамическими качествами запорно-регулирующей арматуры, полное время изменения состояния которой по критерию «открыто-закрыто» составляет десятки секунд, так и порядком ввода в работу насосного оборудования — пуск на закрытую задвижку и последующее ее открытие.

К контурам и системе регулирования в целом дополнительно предъявляются следующие требования:

— Отработка управляющих и возмущающих воздействий без перерегулирования и отсутствия колебаний или при быстром их затухании.

— Окончание колебательного процесса с установлением новых заданных показателей за время, удобное для визуального контроля (до 5 мин).

В этих условиях передаточной функцией обычно выбирают для регуляторов всех контуров регулирования пропорционально-интегрирующее или интегрирующее звено, с предпочтением интегрирующему звену, поскольку нет необходимости в компенсации постоянных времени объекта регулирования. Регулирование без статической ошибки является важным условием функционирования теплопотребляющих агрегатов. При наладке регуляторов и выборе параметров регуляторов ориентируются на наибольшую постоянную времени объекта в контуре регулирования.

ПОРЯДОК ВЫБОРА КЛАПАНОВ NELES JAMESBURY

Выбор клапанов основывается на анализе критических контуров регулирования в соответствии с технологической схемой и проводится в следующей последовательности:

1. По результатам анализа технологической схемы выделяются контуры, где небольшие изменения параметров на входе приводят к непропорционально большому или малому изменению параметров на выходе. Эти контуры рассматриваются отдельно, и для них производится специальный выбор клапанов, способных работать в таких условиях.

2. Клапаны для этих контуров рассчитываются по специализированной программе расчета NELPROF.

3. Далее проводится их оптимизация для конкретных контуров регулирования в соответствии с особенностями работы контура и заданием от системы АСУ ТП.

4. Важное значение в повышении точности регулирования в настоящее время играют смарт позиционеры. Однако, их внедрение на предприятиях отрасли недостаточно. Причины этого рассмотрены в блок-вставке.

БЛОК-ВСТАВКА

ТИПОВЫЕ ПРИЧИНЫ ПЛОХОЙ РАБОТОСПОСОБНОСТИ ПОЗИЦИОНЕРОВ НА ПРЕДПРИЯТИЯХ РФ

Механические\электрические дефекты, указанные в инструкции.

1. Изменение контрольной точки положения клапана не влияет на положение привода

1.1. слишком низкое давление питания

1.2. золотник заедает

1.3. неправильные параметры настройки

1.4. привод и\или клапан заклинивает

1.5. провода сигнала подсоединены неправильно, на дисплее нет значения

1.6. платы управления повреждены

1.7. не проведены калибровка и настройка

1.8. контроллер работает в ручном режиме

1.9. блок предварительного регулирования неисправен

1.10. контроллер находится в режиме защиты от сбоев.

2. Привод переходит в крайнее положение при незначительном изменении входного сигнала

2.1. пневмотрубки между контроллером и приводом неправильно соединены

2.2. неправильно установлены параметры PFR и ROT

3. Неточное положение

3.1. узел золотника загрязнился

3.2. слишком высокая нагрузка привода

3.3. давление питания слишком низкое

3.4. сенсоры давления или золотник повреждены

3.5. протечка привода

4. Режим автоколебания или замедленное реагирование

4.1. измените параметр PEFR

4.2. узел золотника загрязнился

4.3. диаметр пневмотрубки слишком мал или загрязнен воздушный фильтр

4.4. клапан заклинивает

4.5. проверьте, нет ли протечки у трубок между контроллером и приводом

4.6. проверьте, нет ли протечки в винтах ограничения хода привода

5. Ошибка при калибровке хода клапана

5.1. контроллер работает в ручном режиме (MAN)

5.2. проверьте, что соединение оси выравнено по указателю

5.3. неправильно установлены параметры PFR и ROT

5.4. привод и клапан не двигается или заел в ходе калибровки

5.5. слишком низкое давление питания

5.6. узел золотника загрязнился.

6. Типичные причины плохой работоспособности цифровых позиционеров Метсо на предприятиях отрасли в РФ.

6.1. Недостаточное качество воздуха по влажности, загрязненности маслами, запыленностью, наличию в воздухе абразивных частиц, наличие коррозионной среды в воздухе, способствующее окислению.

6.2. Неправильная калибровка и связанные с этим проблемы закрытия клапана при сбое позиционера. Например, в ходе анализа работы позиционеров на ряде предприятий, была обнаружена следующая ситуация: Позиционер ND9000 накапливал ошибки во внутренней памяти и при переполнении количества ошибок просто останавливал свою работу, перекрывая поток среды.

6.3. Нестабильность регулирования и плавание коэффициентов усиления из-за недостаточной настройки позиционеров и качества обслуживания.

6.4. Плавание давления в сети инструментального воздуха, превышение или понижение допустимого уровня давления для работы позиционера.

6.5. Пробой электронных плат в связи с наличием сернистых соединений в воздухе, осаждения на электронных компонентах и их разъедания.

6.6. Неудовлетворительное качество трубопроводов КИП и А, в частности использование обычных трубопроводов из углеродистой стали, некоррозионностойких и склонных к образованию ржавчины вместо трубопроводов из нержавеющей стали.

6.7. Неправильный расчет и выбор трубопроводов подачи инструментального воздуха, приводящий к повышенным сопротивлениям, снижению давления ниже допустимого. Заниженный диаметр трубопроводов инструментального воздуха.

6.8. Смарт позиционер ND 800. Электронные платы имеют ограниченный срок эксплуатации. В связи с этим необходимо проводить их плановые замены и проверку.

6.9. Вибрации в трубопроводе выше допустимых для позиционера, указываемых в инструкции по эксплуатации, в результате чего позиционер часто подклинивает.

6.10. Использование старых непроверенных кабельных трасс. Выполнение работ других подразделений без учета влияния на прохождение киповского сигнала. Примеры: проведение сварочных работ, неправильные соединения кабелей, проведение высоковольтных линий вблизи кабельных трасс, плохая помехозащищенность кабелей, недостаточная пропускная способность кабелей по сравнению с полевыми шинами.

6.11. Установка системы DCS, без модернизации пневморегулирования клапанов. Таким образом, создается диссонанс в работе между верхним и нижним уровнем автоматизации. Клапаны не способны выполнять задание системы DCS в полном объеме.

6.12. Нет практики и приемов работы, понимания персоналом требований к работе с цифровым позиционером. Обязательно требуется проведение обучения работе со «смарт» позиционерами.

6.13. Ошибки при выборе клапана. Например, если заслонка при сильных возмущениях не может дойти до положения «закрыто», то позиционер может выдавать ошибку.

6.14. Из-за высокой скорости реагирования и быстродействия, исполнительные механизмы могут не успевать отработать управляющий сигнал, в результате позиционер может давать ошибку и сбой.

2.5. Программа перерасчетов арматуры на новые условия производства

Программа применяется с целью установки современных клапанов и характерна для крупных модернизациях с большим объемом проектных и монтажных работ.

ОБЩИЕ ХАРАКТЕРИСТИКИ

За время, в течение которого эксплуатируется комбинат, производится множество усовершенствований, модернизаций, локальных установок клапанов и арматуры, отличающихся от заданных в проекте. Часто меняется композиция, граммаж бумаги, начинают производиться новые виды бумаг. Для бумагоделательного производства частые переключения в смену, небольшие партии бумаг от чековой до практически картонов также являются очевидной проблемой для клапанов, рассчитанных на определенный вид выпускаемой бумаги.

В тоже время, как правило, модернизируется только оборудование, а арматура остается неизменной и заказы арматуры на замену производятся по старым или устаревшим спецификациям, не отражающим современных технических решений, закладываемых мировыми производителями в новые образцы арматуры. Проектными и монтажными организациями при различных модернизациях, приобретении нового оборудования, превышении проектной мощности, как правило, не уделяется вопросам доведения до новых показателей вспомогательного оборудования, включая клапаны и арматуру.

По этим вопросам необходимо рассмотреть вопросы организации взаимодействия между проектными организациями и компанией — производителем арматуры. К таким вопросам относятся отсутствие перерасчетов клапанов и арматуры при проведении модернизаций технологических потоков. Так, при выводе мощностей из потока и снижении производительности, клапаны оказываются значительно большего размера, чем требуется для оптимального регулирования. При этом они теряют способность к качественному регулированию в оптимальном диапазоне открытия. При вводе новых мощностей клапаны могут работать за пределами рекомендуемого максимального диапазона открытия, при этом способность к регулированию теряется.

ПРОБЛЕМЫ ПЕРЕРАСЧЕТОВ

Переход на новое модернизированное оборудование и технологические линии часто входит в противоречие с имеющимися установленными клапанами и арматурой. В проводимых проектными организациями расчетах указывается, как правило, только основное оборудование, насосы, емкости и др., без учета необходимости согласования с работой клапанов.

Проектными организациями пока не разрабатываются технические обоснования перевода на интеллектуальную арматуру. Для этого необходима разработка плана мероприятий по созданию инфраструктуры подачи воздуха как основы подготовки такого перевода совместно с проектно-монтажными организациями по следующим позициям:

— разработка обоснования для компрессорной станции специально под цели КИП и А;

— включение фильтров — осушителей в схему;

— доведение качества воздуха до требуемых параметров;

— разработка новых мест установки клапанов для улучшения регулирования процессов.

ТРЕБОВАНИЕ УНИФИКАЦИИ

Неоднократные модернизации, ремонты, аварийные замены клапанов, естественный и моральный износ клапанов, их устаревание в связи с появлением новых разработок завода-изготовителя выявляют слабые места и в арматурном хозяйстве. Докупается оборудование разных производителей, где клапаны ориентированы на потребности поставщика и договорные отношения фирмы-изготовителя оборудования и поставщика клапанов, а не на потребности комбината — заказчика. Используются старые технические решения, например, закладывается использование только шиберных задвижек там, где более эффективно использовать более современные поворотные затворы и шаровые краны. В ряде случаев используются угловые вентили, хотя здесь уже показана эффективность замены их на шаровые краны. Используются старые решения на базе шаровых клапанов, которые не учитывают возможности установки вместо них сегментных клапанов и др.

Унификация клапанного хозяйства упрощает вопросы проектной подготовки, технического сопровождения, внесения изменений в проекты поставок оборудования от различных производителей. При использовании клапанов разных производителей есть трудности в создании клапанных узлов, например, регулирующий клапан — расходомер, клапан с бустер-элементом, клапан с эко-фильтром, клапан с дополнительным контроллером контроля за состоянием протечек. Не всегда работоспособной оказывается триада"клапан-привод-позиционер", поскольку все они могут иметь разные характеристики и плохо сочетаться друг с другом.

Решение задачи унификации клапанов в таком разрезе позволит резко повысить вероятность прогноза неисправности и, соответственно, своевременного ремонта или замены оборудования.

ПРЕДЛАГАЕМЫЕ ПРОГРАММЫ СОТРУДНИЧЕСТВА

1. Перерасчет клапанов других производителей на клапаны и арматуру НЕЛЕС, как наиболее используемые в ЦБП.

1.1. Перерасчеты клапанов по спецификациям других инжиниринговых компаний, выбранных комбинатом в качестве поставщика. Их перерасчет и на вспомогательных хозяйствах позволит получить значительно более высокие показатели унификации и взаимозаменяемости клапанов.

1.2. Перерасчеты клапанов при снижении проектной мощности и снижении производительности.

2. Перерасчеты клапанов при изменении исходного состава сырья, при переходе на другой граммаж бумаги, перерасчет клапанов при переходе на другие виды бумаг. Выполнение расчетов экономии удельных расходов щепы, щелоков, повышения выхода целлюлозы, химикатов, наполнителей, проклеивающих веществ, пара, воды, и др. при переходе на клапаны с тонким регулированием.

3. Перерасчеты клапанов для улучшения качества и технологии. Эффективно при частых сменах технологических режимов и нестабильности качества, при повышении давления пара и температуры, среднего содержания взвешенных частиц.

3.1. Перерасчеты клапанов на наиболее ответственных участках процессов и трубопроводов (наличие или вероятность процессов вскипания, гипсации, кавитации и др.).

3.2. Перерасчеты клапанов после получения диаграмм процесса для прогнозирования эффективности применения тех или иных клапанов с целью снижения колебательности процесса.

3.3. Перерасчеты клапанов в сопряженных технологических потоках при установке оборудования на других участках и сильно влияющих на изменение материального или теплового баланса по потоку.

3.4. Анализ потерь тепла и пара на разогрев арматуры и возможность установки клапанов и арматуры с обогревом (до 3 — 5% потерь может приходиться на потери в арматуре).

3.5. Применение более современных технических решений по пароконденсатным системам на основе повышения стабильности регулирования, за счет стабильности подачи пара, отвода конденсата, точного поддержания дифференциала давления. Например, одной из задач является снижение колебаний давления пара с 10-15 кРа до 2 кРа, при этом прогнозируемое снижение неравномерности влажности в машинном направлении по бумажному полотну может достигать до 60%.

4. Перерасчеты клапанов при изменении систем гидротранспорта. Перерасчеты клапанов при обосновании перехода на нержавеющие трубы. Замена трубопроводов из черных сталей на нержавеющие с одновременным повышением компактности и установкой современных клапанов. Перерасчеты клапанов при подключении новых трубопроводов к действующим.

5. Перерасчеты клапанов при начале использования смарт арматуры и интеллектуализации клапанов.

5.1. Перерасчет и обоснование перехода с аналоговых позиционеров на интеллектуальные на конкретных технологических процессах. Например, комплексный перерасчет клапанов на всей технологической линии с обоснованием перехода на интеллектуальные клапаны.

5.2. Обоснование перевода ручной арматуры на арматуру с управлением от привода и интеллектуализация при установке позиционеров.

5.3. Перерасчеты клапанов на интеллектуальные при вводе в работу автоматизированных систем управления, в т.ч. и локальных.

5.4. Комплексные технико-экономические расчеты эффективности установки интеллектуальных клапанов, например, NELES Cv или интеллектуальных позиционеров как в целом, так и по потокам. Например, с учетом практических данных по среднему отклонению процесса, отражаемых в виде диаграмм процесса можно показать, как снижение колебательности процесса с 4-5% до 1-1.5% при замене шаровых клапанов на сегментные и сегментные NELES Cv, т.е. снижение колебательности процесса до 80% позволит сократить расходы на потребление химикатов, пара, и др. в комплексе по установкам и по процессу.

5.5. Замена шиберных задвижек на поворотные заслонки в частности на вакуумных системах. В настоящее время на ряде предприятий используются шиберные задвижки, иногда просто снятые с массного потока. Это приводит к потере как минимум 20% вакуума.

6. Разработка клапанных узлов для узких мест производства

Перерасчеты клапанов с целью разработки клапанного узла — установки бустера, местного фильтра и др.

7. Новые проектные решения с целью компактного размещения производства

Например, это арматура для компактной установки трубопроводных разводок в ограниченном пространстве. Цель в т.ч. достигается и применением компактной арматуры с компактными приводами, меньшего веса, укладывающихся в зоны обслуживания клапанов. Технико-экономический эффект при этом достигается за счет снижения общей протяженности трубопроводов и нагрузки на насосы, общего веса трубопроводов, возможности в момент допроектирования создавать зоны обслуживания и установки клапанов, снижения тепловых потерь на трубопроводах, упрощения схем разводок и поиска неисправностей и в целом, возможности группового обслуживания трубопроводов. Пересмотр трубных обвязок часто позволяет снизить затраты на монтажные работы и работы по обслуживанию до 40%. Использование готовых узлов, элементов и секций, централизованно изготовленных в трубозаготовительных цехах, позволяет в значительной степени упростить технологию и организацию монтажа, особенно внутрицеховых и обвязочных трубопроводов. Это в 5-6 раз снижает объемы работ, выполняемые на монтажной площадке. Сроки монтажа могут упасть в 3-4 раза.

8. Применение в проектах комплексных современных решений, Так, по примеру проектно-инжиниринговой компании Якко-Пери, при использовании специальных программ для компактного размещения трубопроводов, эффект достигается при снижении веса клапанов и арматуры, например, при замене наиболее габаритных шиберных и клиновых задвижек, применении более перспективных решений при проектировании привода, применении специальных позиционеров. Это позволяет снизить вес арматуры к весу труб с 15% до 7-10% и ниже. Существующие характеристики характеристик веса арматуры и других сопряженных элементов к весу труб приведены в табл.2.5.1.

Табл. 2.5.1. Показатели комплектации трубопроводов

СХЕМА РАБОТЫ ПО ПЕРЕСЧЕТУ КЛАПАНОВ ДЛЯ КРУПНЫХ ЦБК

Схема работы по перерасчету разрабатывается с учетом доминирующей арматуры на предприятии. Учитывая, что на многих комбинатах установлено множество клапанов МЕТСО (Neles, Jamesburry) обычно проводят их технический аудит и перерасчет ее параметров в соответствии с сегодняшним состоянием дел и планами по развитию предприятий. Для этих целей предлагается следующий план работы:

1. на первом этапе компания — аудитор совместно со специалистами предприятия (технологи, КИП и механики) проводят перерасчет клапанов на каждом из участков, с целью приведения их в соответствие с сегодняшними характеристиками по специальным программам и предоставляют варианты установки клапанов взамен установленных.

2. На втором этапе по результатам аудита и перерасчета совместно с производителем арматуры готовятся предложения по наиболее критическим клапанам взамен установленных, которые помогут снять слабые места и усилить возможности регулирования процессов.

3. По разработанной заказной спецификации компания — производитель (поставщик) поставляет новые клапаны, выпускаемые по последним спецификациям взамен устаревших. Старые клапаны передаются на продажу по программе создания обменного фонда клапанов и арматуры. При этом возможно существенное уменьшение стоимости клапана.

На последнем пункет стоит остановиться особбо, поскольку он существенно влияет на стоимость и одновременно можно показать, как можно повысить эффективность использования арматуры при использовании услуг специализированных на арматуре сервисных центров. Для этого рассмотрим пример компании Метсо автоматизация.

БЛОК-ВСТАВКА

ПРЕИМУЩЕСТВА ИСПОЛЬЗОВАНИЯ УСЛУГ СПЕЦИАЛИЗИРОВАННОГО СЕРВИС ЦЕНТРА КОМПАНИИ МЕТСО АВТОМАТИЗАЦИЯ ДЛЯ ПРОЕКТНО-МОНТАЖНЫХ ОРГАНИЗАЦИЙ

Общий вес деталей и арматуры в технологических внутрицеховых трубопроводах достигает до 28% от веса труб. При снижении общего веса арматуры за счет замены наиболее тяжеловесных шиберных или клиновых задвижек на поворотные заслонки, в ряде случаев монтажные операции упрощаются и такелажные работы могут быть заменены средствами простой механизации.

ПРЕДЛОЖЕНИЯ СЕРВИСНОГО ЦЕНТРА ДЛЯ ПРОЕКТНО — МОНТАЖНЫХ ОРГАНИЗАЦИЙ

1. Подготовка клапанного узла в мастерских монтажной организации с участием сервис инженера сервисцентра, включая эко-фильтр, бустер, масло-водоотделитель, привод, контрольно-измерительные приборы и др. для монтажа на месте не отдельных узлов, а целого комплекта.

2. Монтаж арматуры внутрицеховых трубопроводов с участием сервис инженера. Из общего веса внутрицеховых трубопроводов примерно 63% приходится на участки, имеющие сложную конфигурацию, 37% на прямолинейные участки. Из них линии и участки трубопроводов сложной конфигурации с условным проходом более 50 мм, как правило, монтируются из узлов, которые могут быть заранее изготовлены монтажными участками в трубозаготовительных цехах с установкой арматуры и тестированием всего узла. Трубопроводы диаметром менее 50мм монтируют на месте, их вес в общем объеме, как правило, меньше 5%. Однако, по объему работ они занимают до 24%. В этом случае участие специалистов сервис центра в шефмонтаже клапанов и арматуры должно происходить и на монтажной площадке. Показатели трудоемкости основных операций монтажа приведены в табл.2.5.2.

Табл. 2.5.2. Показатели удельной трудоемкости основных операций монтажа внутрицеховых трубопроводов

3. С целью повышения эффективности установки арматуры и клапанов, их быстрой настройки, предлагается изначально в спецификации указывать необходимость шефмонтажа специалистами, что повысит процент сдачи укрупненной сборки с первого раза. Так, при сравнении трудоемкости монтажа 1 м обвязочного трубопровода двумя способами можно сказать, что при монтаже 1 м трубопровода с условным проходом 50-500мм «по месту» трудоемкость составляет 2,15 чел-ч или 103 чел-ч в пересчете на 1т трубопровода. При монтаже трубопровода узлами трудоемкость составляет 1,50 чел-ч, или в перерасчете на 1 т трубопровода 75 чел-ч с учетом трудозатрат на изготовление узлов в цехе. Трудоемкость собственно монтажа 1м трубопровода готовыми узлами составляет 0,76 чел-ч. Норма выработки повышается более чем в 1,4 раза при проведении монтажа своими силами на монтажной площадке и в 2,8 раз при привлечении специалистов сервисного центра. Если участвует шеф инженер, то ускорение достигается за счет лучшего контроля и приемки узла с первого предъявления.

4. Увеличение производительности труда при монтаже арматуры трубопроводов достигается максимальной индустриализацией монтажных работ за счет заводского изготовления деталей трубопроводов, централизованного изготовления клапанных узлов и секций и монтажа укрупненными блоками в составе готовых обвязочных узлов для непосредственного подсоединения к аппаратам и оборудованию. Например, монтаж внутрицеховых трубопроводов готовыми узлами повышает производительность труда на 35% по сравнению с монтажом по месту и снижает себестоимость монтажа на 10%.

2.6. Программа"Повышение эксплуатационной надежности и расширения гарантий"

«Надежность закладывается при проектировании, обеспечивается при изготовлении и подерживается при эксплуатации»

Эта фраза подскажет нам, что надежность не является каким-то отдельным показателем, но представляет собой сумму надежности по многим индикаторам. Чтобы обосновать эту программу мы должны рассмотреть ряд вопросов, которые в значительной степени прояснят, что такое надежность для непрерывных процессов целлюлозно-бумажного производства. Мы рассмотрим следующие вопросы:

— Умеем ли мы считать надежность?

— Требования надежности. Как их обнаружить? Будут ли это опросы потребителей? Какова связь надежности работы клапанов с надежностью узлов бумажной машины, системы АСУТП, измерительных систем? Как учитывать внезапные и постепенные отказы арматуры?

— Какие методики применяют для определения надежности. Методика предварительного статистического анализа и полевого аудита. Примерная форма определения параметров надежности.

— Почему особенно важна надежность клапанов и арматуры в составе измерительных комплексов?

— Внезапные отказы. Постепенные отказы. Постепенный метрологический отказ и сбои.

— Каково влияние режимов работы на работоспособность клапана. Влияние коррозии. Влияние эрозии и кавитации. Влияние пульсации и вибрации на клапаны массопроводов и системы парораспределения.

— Как повысить надежность клапанов? Конструктивные и эксплуатационные способы, применяемые арматурными компаниями. Повышение надежности клапанов в составе измерительных комплексов и контуров регулирования.

— Экономические аспекты надежности.

— Программа расширения сроков гарантии на основе повышения надежности клапанов.

УМЕЕМ ЛИ МЫ СЧИТАТЬ НАДЕЖНОСТЬ РЕГУЛИРОВАНИЯ?

Хотя клапаны используются повсеместно, однако, для такой технологической среды как бумажная и целлюлозная масса и других сред, используемых в ЦБП, подобные расчеты надежности в проектные решения практически не закладываются. Иногда производители регулирующей арматуры приводят данные по потокам отказов или наработке на отказ в своих каталогах, но не для отрасли ЦБП. В то же время клапан, установленный на бумажной массе и работающий в условиях агрессивной среды целлюлозно-бумажного производства, может иметь в 6 раз большую вероятность отказа по сравнению с нормальными условиями, для которых приведены данные по отказам в каталогах арматуры. Наверное, именно поэтому, только длительная эксплуатация и статистика может служить надежным критерием оценки применяемых клапанов и, наверное, поэтому в справочниках по автоматизации ЦБП из данных по зарубежным производителям приведены данные только по надежным клапанам Neles.

В предлагаемых материалах мы хотели бы обсудить, что такое надежность регулирующих клапанов и запорной арматуры применительно к ЦБП, как повысить надежность и расширить сроки гарантий по применяемым клапанам, а также предложить оригинальную методику предварительной оценки надежности и диагностики. В качестве примеров приводится опыт компании Метсо Автоматизация.

НЕМНОГО О ТЕРМИНАХ

Основным показателем качества клапанов в ЦБП является надежность их работы, т.е. свойство выполнять заданные функции, сохраняя свои эксплуатационные показатели в заданных пределах в течение требуемого промежутка времени или требуемой наработки (определение ГОСТ 27.002-2015 Надежность в технике (ССНТ).

Надежность клапана обусловливается его безотказностью, ремонтопригодностью, сохраняемостью и долговечностью его частей.

Безотказность — это способность сохранять работоспособность в течение срока наработки без вынужденных перерывов.

Вероятность отказа — это вероятность того, что в течение времени T произойдет хотя бы один отказ.

Интенсивность отказов — отношение числа клапанов, вышедших из строя в какой-то интервал времени, к среднему числу клапанов, находящихся в этом интервале в работоспособном состоянии, деленное на этот интервал времени. Интенсивность отказов является удобной характеристикой надежности и определяется из опыта эксплуатации и специальных испытаний для оценки надежности.

Работоспособность — это состояние клапана, при котором он способен выполнять заданные функции с параметрами, установленными требованиями технической документации.

Долговечность — свойство сохранять работоспособность до предельного состояния с необходимыми перерывами для технического обслуживания и ремонтов.

Отказ — событие, заключающееся в нарушении работоспособности.

Неисправность — состояние узла, при котором он не соответствует хотя бы одному из требований технической документации.

Ремонтопригодность — свойство, заключающееся в его приспособленности к предупреждению, обнаружению и устранению отказов и неисправностей путем проведения технического обслуживания и ремонтов.

Дополнительно используются термины вероятности безотказной работы, вероятности отказа, интенсивности отказов, равнонадежности, потока отказов, среднего времени безотказной работы, эффективности восстановления и др.

ТРЕБОВАНИЯ НАДЕЖНОСТИ

По опросу, проведенному журналом Control Engineering в 2007 году (см. рис.2.6.1.), около 80% респондентов — пользователей регулирующих клапанов сообщили, что надежность является наиболее важным качеством клапанов. На лучших предприятиях работают или внедряются программы повышения надежности наиболее критичных регулирующих контуров, т.е. тех, которые определяют качество всего процесса, конечного продукта или существенно влияют на себестоимость. Требование надежности возрастает в случае повышения скорости процессов, повышения качества, необходимости стабильности технологических процессов и всегда помогает осуществить высокий уровень автоматизации.

Рис. 2.6.1. Критерии выбора регулирующих клапанов

Уже достигнуты несомненные успехи по повышению надежности работы клапанов. До 40 % пользователей клапанов сообщили, что они заменяют или ремонтируют клапаны раз в 3 года, 30 % — раз в 2 года и 30 % — раз в год. При этом компании, которые осуществляют ремонт раз в 3 года, используют интеллектуальные системы диагностики клапанов, позволяющие предвидеть аварию, а не разбираться с ней по свершившемуся факту.

Основными причинами невысокого уровня надежности арматуры назывались: недостаточный учет реальных условий эксплуатации, недостатки в методологическом подходе к решению проблемы обеспечения надежности, скрытые технологические дефекты.

Недостаточный учет условий эксплуатации

Имеется как минимум три этапа, и точнее это стыки между этими этапами, когда объективно «теряются» и не учитываются факторы, являющиеся потенциальными причинами будущих отказов: это недостаточное определение технических требований и неправильное заполнение опросных листов, неучет возмущающих факторов при эксплуатации. Ими могут быть — реальные режимы нагружения на элементы арматуры, зависящие от постоянных, аварийных и незапланированных пульсаций давления в процессе технологических циклов системы, монтажных перекосов и вибрации трубопроводов, усилий, возникающих при функционировании арматуры, внутренних концентраторов напряжений, технологического термоциклирования и др. Это и специфичность совместного действия механических и термических факторов — коррозии и механических напряжений. Возможность появления критических режимов процессов протекания рабочих сред вследствие изменения технологических режимов системы, приводящих к повышенной турбулизации, кавитации, эрозии в местных гидравлических сопротивлениях проточной части арматуры.

Как показывает опыт, основной причиной выхода из строя арматуры в химической и целлюлозно-бумажной промышленности является неправильное ее применение, неучет особенностей эксплуатации и параметров трубопроводных систем. При анализе и аудите причин выхода из строя арматуры зафиксировано большое число отказов, возникающих вследствие использования арматуры в условиях, не предусмотренных технической документацией.

Чтобы избежать этого, многие фирмы разрабатывают программы по повышению качества и надежности арматуры. В таких программах выделяются следующие основные задачи: создание паспортов арматуры и компьютерной базы данных по истории эксплуатации (обслуживание, аварии, ремонт каждой единицы арматуры) и снятие с тендеров закупок арматуры без надлежащего анализа ее пригодности для конкретных условий эксплуатации, предоставление поставщиком расчетных данных и обеспечения гарантий по работоспособности арматуры во время ее эксплуатации, гарантии сервисного обслуживания и поставок запчастей и др. Это устраняет возможность эксплуатации некондиционной арматуры и внеплановых аварийных остановов по причине ее выхода из строя.

К факторам, нарушающим требования документации при монтаже и эксплуатации, относятся следующие:

— перед установкой арматуры в систему не проводятся приемочные испытания, регламентируемые технической документацией;

— не контролируется гарантийный срок службы, что приводит к эксплуатации некондиционной арматуры, вероятность аварийного выхода из строя которой особенно велика;

— нарушается регламент освидетельствования и ремонта арматуры, ведение паспорта;

— применяются «крючки» — рычаги-удлинители при закрывании арматуры вместо применения динамометрических ключей;

— при эксплуатации экстремальные условия возникают при незапланированных остановах и пусках технологических линий;

— запорная арматура может использоваться при регулировании и дросселировании, что приводит к выходу ее из строя.

Недостатки в методологическом подходе к оценке надежности

К ним относятся: Применение только статистических моделей, на основе информации «работоспособность — отказ» и только формального модельного подхода к распределению вероятностей отказа, тогда как на самом деле необходимо полноценно использовать данные эксплуатации.

Для расчетов надежности только арматуры по критерию постепенного или внезапного отказа применяются методика анализа и критерий непревышения «нагрузка — прочность», для анализа метрологической надежности критерий «параметр-поле допуска».

Силовые воздействия, формирующие поля напряжений, например, в корпусных деталях, вызываются как правило, гидростатическим давлением рабочей среды, усилием уплотнения в затворе от привода, изгибающим моментом в местах соединения трубопроводов (монтажные погрешности, деформации трубопроводов в режиме эксплуатации). Возможные последствия силовых воздействий — недопустимые деформации и разрушение деталей арматуры, разгерметизация в затворе и относительно окружающей среды.

Из всех элементов арматуры наиболее катастрофические аварии случаются при разрушении корпусов арматуры. Однако, доля таких разрушений достаточно мала, они связаны, в основном с гидравлическими ударами, технологическими и скрытыми дефектами и составляют 3-5% всех видов отказов.

Наибольшее число отказов вызвано поверхностными процессами — изнашиванием, коррозией, эрозией, кавитацией и их совместным действием. Например, анализ отказов различных видов арматуры (более 150 000 случаев, данные ЦКБА) показал, что их основной причиной явились различные виды изнашивания — 65%, коррозии — 25%, эрозии и кавитации — 5%. Эта тенденция характерна и для арматуры, предназначенной для комплектования химических производств и ЦБП.

Особенно потенциально опасны агрессивные и коррозионно-активные среды. Кроме коррозионного поражения эти среды в условиях действия полей напряжений приводят к усилению механохимических реакций — резкому возрастанию скорости растворения деформированных участков поверхности, коррозионному растрескиванию, значительной интенсификации изнашивания, эрозии и кавитации.

Термическое воздействие среды приводит к заклиниванию деталей в сопряжениях вследствие различного коэффициента термического расширения, возрастанию коррозионной активности рабочей среды, возникновению в деталях дополнительных полей термонапряжений, изменению механических свойств материала и др.

СВЯЗЬ НАДЕЖНОСТИ КЛАПАНОВ С НАДЕЖНОСТЬЮ УЗЛОВ БУМАГОДЕЛАТЕЛЬНОГО ОБОРУДОВАНИЯ

Важность учета специфики надежности клапанов для бумагоделательного производства связано как с непрерывностью процесса, необходимостью точного регулирования, так и с огромным количеством установленных клапанов. Их количество на одном крупном ЦБК может доходить до 40.000 из них до 4000 — регулирующих.

Среди общих простоев бумагоделательных машин до 15% приходится на долю клапанов и арматуры. В структуре ремонтного цикла бумагоделательной машины (1 капитальный, до 4-х средних и до 175 малых ремонтов) на долю арматуры приходится также значительная часть. Каждое ТО связано также, как минимум, с осмотром арматуры и ведением ее паспорта. Сам отказ клапанов может приводить как к полному отказу машины, так и постепенной потере эффективности. По классификации отказов бумагоделательных машин клапаны попадают во все категории, см. табл. 2.6.1.

Табл. 2.6.1. Категории отказов клапанов в бумагоделательной машине

Уже достаточно давно установлено, что максимальные простои буммашин после пуска приходятся на первые годы эксплуатации. И далее, приближаясь к 8 годам эксплуатации, когда большая часть узлов исчерпывает свой ресурс, эксплуатационные затраты растут, а эксплуатационная эффективность падает. Заметное снижение уровня надежности машины в целом начинается через 4-5 лет после выхода на нормальный режим эксплуатации. Эти данные могут использоваться для повышения и расчета надежности клапанов, в частности, чтобы кратность их замены приходилась на этапы замены и других изношенных узлов бумагоделательного оборудования. При этом уровень капитального ремонта всей буммашины может быть повышен. Таким образом, формируя ремонтный цикл арматуры до уровня 4-5 лет после выхода на нормальный режим буммашины в целом, можно добиться повышения надежности и эффективности как капитального ремонта, так и эксплуатационной эффективности машины в целом.

Из процессов, действующих на бумагоделательную машину, клапаны и арматуру в ее составе, можно выделить несколько основных:

— Обратимые — временно изменяющие параметры и поддающиеся регулированию, например, процессы регулирования.

— Необратимые — износ штока, седла клапана, разлохмачивание сальникового уплотнения и др.

— Медленно развивающиеся процессы — зарастание масляной шубой пневмопровода, карамелизация клапана, прикипание, забивание слизью, уплотнение сгустков и др.

— Монотонные процессы средней скорости — Линейное расширение клапанов пароконденсатной группы при температурах эксплуатации.

— Быстроизменяющиеся процессы — работа клапана в условиях высокой вибрации трубопровода, наличие кавитации.

Учитывая, что в большей степени в настоящее время применяют обслуживание и ремонт бумагоделательной машины по составляющим узлам (напорный ящик, сеточная часть, прессовая часть, сушильная секция, каландр), обслуживание клапанов также должно сочетаться с кратностью обслуживания этих узлов. Надежность клапанов и арматуры должна быть больше нормируемых показателей надежности для этих узлов.

Общая эксплуатационная надежность одного и того же клапана или его элемента может отличаться в десятки раз. Так, по данным, приведенным в исследованиях по надежности в химической промышленности, показаны следующие цифры, см. табл. 2.6.2. Из этих же данных можно увидеть и место вероятности отказа клапана среди других элементов контуров регулирования и сопряженных узлов.

Табл. 2.6.2. Вероятность отказа клапанов и элементов контуров регулирования

Внезапные и постепенные отказы

В зависимости от характера изменения параметров отказы делятся на внезапные, возникающие в результате скачкообразного изменения значений одного или нескольких основных параметров, и постепенные, возникающие в результате постепенного изменения значений одного или нескольких параметров вследствие старения, например, прокладки, мембраны или износа, например, затвора или штока и т.п. В интеллектуальных клапанах, в которых применяются цифровые регуляторы встречаются т.н. сбои.

Для иллюстрации постепенных и внезапных отказов рассмотрим схему как контура регулирования, так и внутренней передаточной функции самого клапана.

Контур регулирования выглядит следующим образом: «датчик — коммуникатор — преобразователь — логическое устройство — коммуникатор — преобразователь — клапан». Из проблем, связанных с этими элементами, к внезапным отказам, означающим полную потерю работоспособности клапана или потерю работоспособности за короткое время, можно отнести заклинивание клапана и катастрофические утечки. К постепенным — износ, заедание клапана, постепенное накопление люфтов в механических соединениях вследствие собственного износа, накипи, карамелизации и пр.

Внутренняя передаточная функция и внутренняя схема передачи сигнала клапана строится следующим образом: задание значения управления «позиционер-привод-клапан» и обратная связь с отслеживанием положения клапана. В этой схеме к внезапным отказам можно отнести заклинивание клапана, разработку отверстий, разбалтывание болтов между штоком и клапаном с последующим заклиниванием, забивание инородными предметами, грязью и т.п. К постепенным отказам — постепенный износ затвора с постепенным увеличением протечек, постепенное «разлохмачивание» уплотнений и сальников, постепенное увеличение мертвого хода в связи с разбалтыванием механических соединений, постепенное увеличение пропуска воздуха в приводах и энергопотребления в связи с износом поршня и др.

Кроме наиболее прогнозируемых постепенных отказов необходимо предусматривать и возможность защиты от катастрофических и случайных отказов. Катастрофическая авария — отказ с разрушением клапана и существенным ущербом. Например, это вынос штока из клапана, находящегося под давлением с катастрофической потерей рабочей среды. Случайная авария — событие, связанное с разрушением клапана или его частей в результате небрежности обращения. Примером является, например, повреждение соединения штока с затвором при использовании для усиления крутящего момента т.н. «крючка». Другой пример — это непонимание связи работы внутренних частей клапана и приваривание хомута к клапану; удары по корпусу клапана для сбива свода при карамелизации, чтобы не было заеданий, при уотором вероятно появление трещины; использование нерегламентированных агрессивных промывных жидкостей для снятия меркаптана с поверхности топливных клапанов, например, керосина, которые могут привести к разбуханию сальников и тефлоновых подшипников; заливка неочищенных смазок в клапан, замена подшипников в клапане с нарушением правил и технологии сборки; нарушение инструкций по эксплуатации; несоблюдение температурных режимов.

Надежность работы повышается, если соблюдаются инструкции по монтажу и эксплуатации, запрещается использование нерегламентированных и неочищенных смазок и промывателей, осуществляется одновременные регламентные работы на всем клапане. Дополнительно должна вестись история клапана, т.е. систематические записи о наработке, отказах, неисправностях и ремонтах, как в специальном журнале или паспорте, так и при помощи программ диагностического комплекса (например, для компании Метсо — программы Field Care). Необходимо вести наблюдения и учет наиболее изнашивающихся деталей, соблюдать правила техники безопасности.

Высока и роль обслуживающего персонала и его квалификации. Примером влияния квалификации на снижение регулирующей способности клапана может служить следующая иллюстрация: чтобы избежать утечек, операторы стремятся затянуть сальник по максимально возможному пределу. Однако, это приводит к повышению трения и росту зоны нечувствительности. При этом зачастую, если у привода не хватает мощности, чтобы обеспечить надежное передвижение штока в условиях повышенного трения, растет мертвая зона и зона нечувствительности, с резким увеличением вероятности заедания. В результате простого неправильного действия будут наблюдаться как снижение качества регулирования, так и повышенное потребление воздуха и износ. Таким образом, надежность определяется параметрами конструктивной и эксплуатационной надежности. Надежность клапанов дополнительно пытаются увеличивать, занижая требования к самому процессу или устраняя нестабильность и факторы, вызывающие проблемы с надежностью. Сама надежность в работе клапана определяется как постепенной потерей показателей надежности в процессе естественного износа, так и катастрофического, например, в результате скрытых дефектов. Примерами скрытых дефектов могут быть: частое или значительное завышение параметров над номинальными, например, скачки давления и связанные с ними гидравлические удары, изменения характера среды и коррозии, частые нарушения режима, большой поток абразива, осаждение, гипсация, усталость отдельных узлов клапана в результате цикличности работы и др.

Отдельно выступают требования надежности и снижения простоев в момент запуска новых производств. Опыт показывает, что уровень простоев в этот период превышает количество и время простоев при нормальной эксплуатации в несколько раз. Применение заранее калиброванных клапанов с широким внедрением цифровых позиционеров, привлечение на шефмонтаж специалистов сервисных центров компаний — производителей арматуры, применение в начальный период эксплуатации диагностических средств позволяет повысить временную стабильность работы машины, снизить простои по вине выходящей из строя техники из-за ошибок персонала.

ФУНКЦИОНАЛЬНО-СТРУКТУРНАЯ СХЕМА НАДЕЖНОСТИ

Большинство типов арматуры относят к простым системам, т.е. таким, элементы которых составляют функционально единую последовательную цепь, отказ любого из элементов которых вызывает отказ системы.

Арматура, как система, легко выделяется из ее окружения, ее параметры четко оговорены в технических условиях и документации. Легко определяются границы системы. Со стороны входа границей системы являются присоединительные элементы приводов, со стороны выхода — граничными элементами являются любые присоединительные детали, с помощью которых арматура подсоединяется к трубопроводам и детали, соприкасающиеся со средой. Для арматуры со встроенными приводами границами являются также электрические контакты или элементы присоединения для подачи управляющих или рабочих сред. Функция большинства типов арматуры состоит в преобразовании входов — параметров работы (движения) в используемые для реализации технологических процессов выходы — параметры потоков материалов — рабочих сред. Параметры работы выражаются обычно через переменные величины: силу или момент, необходимые для приведения рабочего органа (затвора) — в рабочее положение. Для некоторых типов арматуры, требующих быстродействия в качестве рабочего переменного параметра, необходимо использовать скорость или частоту срабатывания. Переменные параметры потоков — это расход, давление, температура и другие регулируемые параметры рабочих сред.

Рассмотрим главные входы и выходы запорной арматуры с точки зрения функциональной надежности:

— момент

— рабочее гидростатическое давление

— скорость срабатывания (для отсечной арматуры)

— утечка на затворе — для запорной арматуры

— гидравлическое сопротивление проточной части при открытом состоянии затвора.

Главные входы и выходы регулирующей арматуры:

— внешняя управляющая сила (момент)

— рабочее гидростатическое давление

— объемный расход.

Возмущения — это те явления в структуре арматуры, которые приводят к ее деградации и потере работоспособности. Возмущения происходят как от внешних причин (коррозия, эрозия от движения потока, термические явления, теплосмены, гидромеханические, динамические процессы — пульсации, вибрации, ударные, распространяющиеся по трубопроводам), так и внутренних — например, переход к резонансным явлениям из-за неучета частоты собственных колебаний элементов и подсистем арматуры, собственная виброактивность клапанов, большие скорости соударения деталей затвора без демпфирования, большие зазоры в кинематических звеньях, передающих работу от привода к затвору — и возникновению значительных динамических нагрузок. Примеры характерных видов возмущений и вызванных ими потерь, встречающихся при эксплуатации арматуры приведены в табл.2.6.3.

Табл. 2.6.3. Характерные виды возмущений и их последствия

Потери являются функцией возмущений. Если возмущения превышают допустимые пределы, то можно говорить об отказах. Например, интенсификация гидромеханического воздействия потока рабочей среды может вызвать эрозию уплотнительной поверхности седла, что в свою очередь может привести к сверхнормативной протечке.

Структура арматуры характеризуется своими подсистемами, их взаимосвязями и свойствами. Первая подсистема реализует функцию арматуры и включает затвор, передаточную кинематическую цепь и привод. Вторая образует несущую оболочку и обеспечивает функции перемещения рабочей среды, герметизацию, механическое крепление к трубопроводам, базу для регулирования и направления подвижных элементов. Третья — корпусные детали. Пятая — узлы уплотнения, шестая — узлы крепления. Седьмая — упругие и чувствительные элементы.

Взаимодействие подсистем между собой обеспечивается в основном рабочими поверхностями уплотнений, пар трения, резьбовыми и другими соединениями. Их можно вынести в отдельную трибомеханическую подсистему.

Каждая из этих подсистем имеет свои собственные закономерности развития и изменения, управляя которыми можно добиваться повышения надежности.

УПРАВЛЕНИЕ НАДЕЖНОСТЬЮ

Уровень надежности — это определенное сочетание значений нормируемых показателей надежности изделий, характеризующее его на определенном этапе жизненного цикла. Для высоконадежной арматуры таким сочетанием может быть: вероятность безотказной работы, назначенный ресурс, средний ресурс до списания, наработка на отказ и др.

Управление уровнем надежности арматуры предполагает обоснованный расчет и выбор уровня надежности, зависящий от работоспособности клапанов в технологическом потоке, и методы организации, обеспечения и поддержания этого уровня на всех этапах жизненного цикла.

Выбор уровня надежности подчиняется следующим двум основным стратегиям — обеспечение требуемого, как правило, высокого уровня надежности и обеспечение экономически обоснованного оптимального уровня надежности. В первом случае рассматриваются контуры регулирования, критичные для работоспособности системы, куда входит арматура в целом. Такими контурами могут быть критические контуры регулирования на варочном котле и бумагоделательной машине, от которых напрямую зависит качество продукции или совершенство и безопасность процесса. С ростом требований к системе, с повышением ее сложности или опасности арматура может переходить из класса «бюджетной» надежности в высоконадежную. В одних случаях отказы арматуры приводят к возникновению катастрофической ситуации — это утечка токсичных сред, взрывы, выход из строя дорогостоящего объекта, в других — к ограниченному экономическому ущербу — это нарушение технологического процесса, потеря качества продукции или выходных параметров технологического режима.

Если последствием отказа является катастрофическая ситуация, то уровень надежности должен задаваться достаточно высоким. Экономические вопросы при этом не являются первостепенными.

Если последствия отказа арматуры ограничены умеренными экономическими затратами, то определяющим в выборе надежности принимается некоторый оптимальный уровень, соответствующий минимуму суммарных затрат при эксплуатации. Это общая точка зрения.

Однако, с ростом скорости бумагоделательной машины, увеличением выпуска качественной продукции, усложнением систем автоматики, ростом числа установленного оборудования, увеличением сложности и взаимовлияния сопряженных контуров регулирования картина существенным образом меняется. При установленной базе клапанов в 1000 ед., даже если они распределены по всему комбинату, при низком коэффициенте надежности до 100 регулирующих клапанов по всему комбинату могут находиться в состоянии отказа. Это означает, что угроза внеплановых и плохо диагностируемых остановов может нависать над выпуском продукции в целом. Это перестает быть проблемой одного клапана, а становится проблемой производства в целом. Отсюда следует, что на всех участках уровень надежности необходимо повышать. Переход к повышенному уровню надежности без большой оглядки на низкие цены является требованием времени. Со временем должен наблюдаться переход от стратегии экономически обоснованной надежности на уровень высокой надежности в целом.

Переход от второй стратегии к первой происходит не только через применение высоконадежной арматуры в целом, но и через применение активной диагностики технического состояния в целом. В этом случае удается для конкретного производства вовремя определять проблемы и переводить контуры регулирования из обычных в требующие повышенной надежности или даже критические.

МЕТОДЫ ОПРЕДЕЛЕНИЯ НАДЕЖНОСТИ

Определение надежности в основном производится статистическими методами за счет длительного накопления статистических данных и практики отработки применения клапанов для конкретного процесса. Математические методы часто не дают достоверных результатов. Однако, длительная обработка измерений в т. н. промышленном эксперименте или проведение испытаний по методу планирования эксперимента с математической обработкой и получением уравнений регрессии надежности позволяют дать достоверные прогнозы. Помогают и отработанные методы укрупненной статистической обработки данных заказов на клапаны и запчасти, а также паспорта и карты регистрации эксплуатации клапанов. Дополняя эти материалы информацией, полученной при обработке данных, снятых непосредственно с клапана при помощи программ диагностики, можно получить ясную и полную картину состояния клапана и спрогнозировать его долговечность и работоспособность.

К характеристикам надежности в нормальных условиях эксплуатации относятся такие параметры как безотказность, наработка на отказ, а к характеристикам надежности в анормальных условиях способность выдерживать нагрузки выше номинальных, пульсации, вибрации, гидравлические удары, работа в условиях кавитации и эрозии, живучесть и др. Определение надежности совместно с безопасностью эксплуатации в условиях аварийной эксплуатации является особо важным для вредных, агрессивных или опасных производств.

Для крупных предприятий, на которых установлены наиболее применяемые в ЦБП клапаны Neles, есть свой способ определения надежности или наиболее слабых мест процесса и наиболее сложных участков. Получение данных возможно за счет анализа поставок за длительный период и интервьюирования специалистов комбината. Даже на этой основе можно дать предложения по прогнозированию надежности клапана в конкретных условиях. Установлено, что исходные данные могут быть собраны из опыта поставок и эксплуатации в течение 2-3-х лет работы производства. Этого, как правило, может быть достаточно для оценки надежности, расчета вероятности отказов и прогнозирования срока службы без отказов. Также основой такого анализа является тот факт, что можно идентифицировать определенное число однотипных клапанов и средств КИП, работающих в близких условиях, что позволяет рассматривать их как совокупность, обладающую одинаковыми свойствами. Такие данные могут предоставляться также и арматурными компаниями — поставщиками, благодаря накапливаемой ими статистике.

Одним из часто задаваемых вопросов является следующий: А насколько достоверна статистика, полученная из статистических данных, где не было возможности заранее задать критерии сбора данных? Такие вопросы возникают из-за того, что не было изначального представления о границах применимости того или иного метода статистического исследования, о «потенциальных возможностях» накопленного статистического материала, которыми обладают компании, или происходит из-за обращения со статистическими моделями так же, как и с детерминированными.

В статистической обработке материала помогают дополнительные модели материального или теплового баланса, данные косвенных исследований, например, общие расчеты систем КИП и А для отдельных цехов ЦБК. Специальные методы статистических методов обработки материала, например, специально для случаев неполных исходных данных информации, пассивного промышленного эксперимента, при наличии неуправляемых показателей, с выделением главных влияющих факторов и их взаимодействий, анализ временных рядов являются математической базой оценки статистически накопленного материала. Для объектов ЦБП характерны ситуации, когда в число входных параметров, определяющих параметры надежности, входят параметры, которые можно регистрировать, но практически нельзя изменять. Ими могут быть, например, показатели сырья, временной дрейф показателей КИП и А, возникающий из-за старения приборов. Эти параметры с точки зрения метрологической надежности могут относиться к неуправляемым.

К сожалению, наработка статистического материала на предприятии в разрезе эффективности и надежности клапанного хозяйства, тем более метрологической надежности весьма затруднителен. Эти данные разбросаны между разными цехами комбината, не отслеживаются в полной мере из-за высокой трудоемкости сбора такой информации и, зачастую, определяются субъективно. Требуются большие усилия по формированию подобных баз данных с целью оценки надежности и расчета показателей обслуживания, как со стороны руководства, так и персонала.

Наиболее простым способом является определение количества клапанов одного типа и одного производителя, находящихся в ремонте или в состоянии отказа. Так, если компания — производитель задает вероятность безотказной работы 0,95, то это означает, что из 1000 установленных на большом ЦБК клапанов в состоянии отказа находятся примерно 50 шт. Статистика Мetso Automation подтверждает, что вероятность безотказной работы клапанов Neles значительно выше и может составлять примерно 0,998. Это означает, что в состоянии отказа будет находиться только 2 клапана с соответствующим сокращением вероятности аварий и нормо-часов на ППР и обслуживание. Для примера, в технической документации на клапаны других производителей задается обычно уровень безотказной работы всего 0,9-0,95.

Погрешности и пренебрежение взаимосвязями между различными параметрами, когда вклад каждого невелик, но в совокупности влияние может быть значительным, особенности поведения процесса вблизи допустимых значений — все это может оказать существенное влияние на течение процесса и метрологическую надежность регулирования в целом. Поэтому при задании критериев метрологической надежности учет такого рода особенностей необходим.

Конечной целью статистического аудита могут являться разные задачи. В частности, это может быть увеличение межремонтных сроков, межповерочных сроков, изменение кратности обслуживания клапанов, выбор наиболее эффективного и надежного клапана с точки зрения как общей, так и метрологической надежности и пр. Поиск оптимального решения заключается, например, в выборе наиболее надежного конструктивного исполнения клапана, трендов, и др. Критерием оптимизации могут быть как наибольшее правдоподобие, так и предсказание вероятности отказа, оптимизация и выяснение особенностей распределения выхода из строя и др. Результат может выражаться, например, в удлинении интервалов обслуживания, изменении кратности обслуживания и ремонтов с целью снижения издержек или регулирование интервалов обслуживания с целью повышения точности регулирования и метрологической надежности. Такие задачи характерны для критических контуров регулирования.

Еще раз уточним, что для получения достоверных и статистически значимых показателей надежности необходимо использовать статистический материал, полученный в условиях, которые не были специально подобраны и были собраны в режиме нормальной эксплуатации клапанов и арматуры на комбинате. При невыполнении этого условия могут возникать определенные трудности при интерпретации данных.

Пример определения параметров надежности

Наиболее удобным параметром является интенсивность отказов. Для ее определения приведем следующий пример. На предприятии установлено N однотипных клапанов.

1. По результатам статистического исследования по отказам этой группы составляется ряд безотказной работы в часах (днях, мес., кварталах, годах). Для предприятий, на которых используется множество клапанов Neles, как правило, есть данные статистики, которые ведет компания Metso Automation в системе Bernie.

2. Производится разбиение этого ряда на промежутки времени. Наиболее эффективно разбивать на мес., что связано с легкостью сбора информации, ее соответствия требованиям расчета, срокам планирования и остановов. Выделяется середина промежутка времени.

3. Определяется число исправных клапанов как «влево» от середины промежутка времени, так и «вправо».

4. Рассчитывается число отказов на интервале.

5. Рассчитываются частоты отказов на каждом интервале.

6. Рассчитывается вероятность отказов поинтервально.

7. Рассчитывается вероятность безотказной работы.

8. Выводится характеристика интенсивности отказов, номинальные фактические значения и тренды.

Обобщенные данные за выбранный период сводятся в таблицу. Примерно также определяется и вероятность безотказной работы. Обобщенный пример расчета за выбранный период эксплуатации клапанов приводится в табл. 2.6.4.

Табл. 2.6.4. Определение основных характеристик надежности клапанов

ХАРАКТЕРИСТИКИ НАДЕЖНОСТИ

Среднее время наработки на отказ. Статистические и расчетные данные, полученные выше, позволяют определить среднее время наработки на отказ или продолжительность работы клапана, которую можно измерить в часах и, например, в циклах для высокоцикличных процессов. Из этих данных по массиву однотипных клапанов и клапанам одного производителя выводится помесячная наработка. Среднее время безотказной работы — это математическое ожидание времени безотказной работы для клапанов, работающих в одинаковых режимах.

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги КУРС ПРОГРАММЫ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ АРМАТУРНОГО ХОЗЯЙСТВА предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я