Все формулы мира

Сергей Попов, 2019

Галилео Галилею принадлежат слова: «Книга природы написана на языке математики». Спустя почти четыре столетия мы не устаем удивляться тому, что математические методы прекрасно подходят для описания нашего мира. Еще большее изумление вызывают естественнонаучные открытия, сделанные на основе математического анализа уравнений. Создание любой сложной конструкции – от хитроумной дорожной развязки до квантового компьютера – сопряжено с математическими расчетами. Для полноценного понимания действия гравитации или квантовых явлений нам также не обойтись без математики. Но это кажется таким сложным и запутанным! Как перестать бояться формул и полюбить математику? Почему она так эффективна в естественных науках? Есть ли этому предел, или, наоборот, для более глубокого понимания природы придется создавать математические конструкции, уже не укладывающиеся в голове человека? Все эти вопросы затрагиваются на страницах книги, а их художественное осмысление представлено в серии рисунков художника Ростана Тавасиева. На многие из них невозможно найти окончательные однозначные ответы. Но мы продолжаем обсуждать их и пытаемся понять, как устроен этот мир. Для этого понадобится преодолеть разделение на «две культуры»: «гуманитариев» и «естественников». Попробуем сделать еще один шаг в этом направлении.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Все формулы мира предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Часть I

Новый язык

А. ЗАКОНАМИ ПРИРОДЫ МЫ НАЗЫВАЕМ НАДЕЖНО УСТАНОВЛЕННЫЕ ЗАКОНОМЕРНОСТИ, ОПИСЫВАЮЩИЕ ПРОЦЕССЫ В РЕАЛЬНОМ МИРЕ. МАТЕМАТИЧЕСКИЕ МЕТОДЫ ПОМОГАЮТ НЕ ТОЛЬКО ЧЕТЧЕ ФОРМУЛИРОВАТЬ ЭТИ ЗАКОНЫ, НО И ИСПОЛЬЗОВАТЬ ПРОВЕРЕННЫЕ АЛГОРИТМЫ И ПРАВИЛА КАК ДЛЯ РАСЧЕТОВ РЕЗУЛЬТАТА ИХ ДЕЙСТВИЯ, ТАК И ДЛЯ ПОЛУЧЕНИЯ НОВЫХ СООТНОШЕНИЙ, Т.Е. НОВЫХ ЗАКОНОВ ПРИРОДЫ.

Б. «НЕПОСТИЖИМАЯ ЭФФЕКТИВНОСТЬ МАТЕМАТИКИ» СОСТОИТ В ПЕРВУЮ ОЧЕРЕДЬ В ТОМ, ЧТО ЗАКОНЫ И ПРАВИЛА, СФОРМУЛИРОВАННЫЕ И ДОКАЗАННЫЕ ДЛЯ ИДЕАЛЬНЫХ МАТЕМАТИЧЕСКИХ ОБЪЕКТОВ, ОКАЗЫВАЮТСЯ С ВЫСОКОЙ ТОЧНОСТЬЮ ПРИМЕНИМЫ К РЕАЛЬНЫМ ОБЪЕКТАМ И ПРОЦЕССАМ.

Глава 1

Формулы и законы природы

Самый глобальный процесс — расширение вселенной[1] — описывается формулой всего лишь из трех символов: v = Hr. Это закон Хаббла. Здесь r — так называемое собственное расстояние до объекта («нормальное» расстояние «в метрах» в данный момент времени), v — скорость изменения этого собственного расстояния со временем по часам наблюдателя (так называемое cosmic time), связанная с расширением. Наконец, H — постоянная Хаббла. Это коэффициент пропорциональности, характеризующий, насколько быстро происходит расширение в данную эпоху. Закон Хаббла можно сформулировать и словами (вообще, чем проще уравнение, тем, как правило, легче это сделать): скорость удаления галактики за счет расширения вселенной прямо пропорциональна расстоянию до нее. Однако весь контекст лучше проявляется именно при формульной записи даже в таком простом случае. И сам закон выводится с очевидной неизбежностью именно на языке формул (см. приложение 1).

Закон Хаббла был получен на основе анализа данных наблюдений в 1929 г., но еще в 1922-м Александр Фридман и независимо от него в 1927-м Жорж Леметр вывели соответствующее соотношение из решений уравнений Эйнштейна для однородной и изотропной вселенной[2].

Наблюдения позволяют проверять закон Хаббла. Для не слишком далеких галактик их скорость можно с хорошей точностью определить по красному смещению, используя закон Доплера (хотя космологическое красное смещение имеет другую природу, тем не менее можно показать, что вплоть до расстояний в несколько миллиардов световых лет доплеровская формула дает довольно правильный результат). Для более далеких галактик скорость рассчитывается в рамках заданной космологической модели.

Удивительным для многих фактом является то, что скорость в законе Хаббла может превосходить световую[3]. Расстояние, на котором это происходит, соответствует сфере Хаббла. До нее сейчас всего лишь около 14 млрд световых лет. Мы наблюдаем галактики, находящиеся в данный момент более чем вдвое дальше, т. е. можем указать на снимке (например, в Ультраглубоком поле Хаббла — на изображении небольшого участка неба размером меньше диска Луны, полученном в результате длительных наблюдений с помощью Космического телескопа имени Хаббла) объект, скорость удаления которого от нас в настоящий момент превосходит 300 000 км/с.

В этом примере хорошо иллюстрируются ключевые преимущества математического подхода в физике (и других науках):

— вывод ключевого закона природы из четко сформулированных предположений путем применения проверенного аппарата (математика);

— компактная, ясная запись (открывающая также путь к наглядной визуализации путем построения графиков);

— возможность расчета следствий (что позволяет, в частности, сравнивать предсказания теории с наблюдениями).

Именно с началом использования математических методов физика стала быстро развиваться, ведь без этого точные экспериментальные данные до некоторой степени были не востребованы (разумеется, верно и обратное: приход математики отчасти стимулирован появлением точных измерений наблюдаемых параметров). То же самое можно сказать и о многих других науках. Замена качественных описаний и построений на количественные расчеты, основанные на развитом математическом аппарате, позволила выйти на новый уровень.

Ретроспективно окидывая взором разнообразные попытки человечества постигнуть суть вещей, мы вряд ли сможем представить, что возможна какая-то альтернатива математическому описанию физических законов. Более того, для нас теперь само их понимание означает, по сути, построение количественной модели, позволяющей успешно описывать данные наблюдений и экспериментов, а также предсказывать исходы будущих опытов. Без формул это сделать невозможно. Именно поэтому некоторые физики (а также химики, молекулярные биологи и многие другие ученые) немного свысока взирают на те науки, где уровень использования математики гораздо ниже и где много качественных (не синоним слова «хороших») словесных рассуждений. Значит, казалось бы, всякий любознательный человек, стремящийся понять, как устроена природа, должен пытаться уяснить все на языке формул. Не тут-то было! Формульный язык, по всей видимости, слишком «неестественен». Человеку как виду несколько миллионов лет, а формулы мы используем в тысячу раз меньше времени. Да и применяют-то их далеко не все. Наш мозг развивался не для того, чтобы использовать формулы. А жаль. О мозге, специально для них приспособленном, мы поговорим в последней главе. Пока же ограничимся современным человеческим восприятием.

Человек уже сталкивался с расширением привычного восприятия мира, ограниченного нашими органами чувств. Сначала в XVII веке были изобретены телескоп и микроскоп. Оказалось, что и на макро-, и на микроуровне «есть многое на свете, друг Горацио, что и не снилось нашим мудрецам». Неожиданно выяснилось, что наши органы чувств недостаточно совершенны для того, чтобы увидеть мириады звезд, из которых состоит Млечный Путь, и мельчайшие живые организмы в капле воды. Позже стало ясно, что существуют виды электромагнитного излучения, недоступные человеческому глазу. Затем выяснилось, что и космос, и окружающее нас пространство пронизывается потоками частиц (например, нейтрино), которые мы не замечаем. Теперь к этому набору прибавились гравитационные волны. Кажется очевидным, что наших врожденных свойств недостаточно для адекватного постижения мира — ни с точки зрения наблюдений за ним, ни, вероятно, с точки зрения полного его осмысления. Однако, так же как телескопы и детекторы разнообразных излучений позволили больше и лучше «видеть», математика помогает нам лучше описывать и понимать, хотя иногда это становится очень непростой задачей.

Сколько людей боится формул! В связи с этим часто раздаются просьбы рассказать о чем-то (космологии, черных дырах, гравитационных волнах) «совсем-совсем без формул». Иногда ученый или популяризатор чувствует себя врачом (например, стоматологом), которого просят помочь, но «так, чтобы не было больно». Благодаря существенным успехам в сфере анестезии сегодня можно, например, безболезненно удалить зуб. Объяснить особенности специальной теории относительности, не пользуясь формулами, заметно сложнее. Тут даже общим наркозом делу не поможешь. Всем памятно утверждение редактора, работавшего со Стивеном Хокингом, о том, что одно уравнение уменьшает продажи научно-популярной книги вдвое. Однако, чтобы как следует в чем-то разобраться, формулы необходимы (и Хокинг не смог обойтись без E = mc2).

Можно выделить три основных случая применения формул, которые при этом могут существенно отличаться по внешнему виду и сути: формулы в чистой математике, формулы для записи законов природы, химические формулы.

Первый тип формул — это, по сути, элементы особого языка, особого способа описания структуры, которую мы выявляем (открываем) лишь постепенно, на протяжении многих сотен лет. Существенно, что ее элементы оказываются связанными друг с другом (иногда довольно «чудесным», т. е. причудливым и неожиданным, образом) определенными законами и правилами, которые также выявляются лишь по ходу выявления свойств структуры.

Второй тип формул — способ описания мира, в первую очередь реального. Однако, как мы увидим позже, работа с гипотезами (которые в основном оказываются неверными в применении к наблюдаемой природе) приводит к тому, что физические формулы служат и для описания возможных миров, отличающихся от нашего. Сила второго вида формул состоит в наличии их первого типа. Иначе говоря, к законам природы можно применять методы манипулирования, уже разработанные математиками для абстрактных структур.

Особняком стоят химические формулы, описывающие структуры молекул и реакции между ними. Наверняка именно та или иная форма записи строения какой-нибудь молекулы — первое, что приходит в голову многим людям при упоминании слова «формула» (эти ассоциации используют в рекламе, рассказывая о новом моющем средстве или моторном масле). В первую очередь формулы — очень удобный способ визуализации. В данном случае они не имеют отношения к математике. Соответственно, мощные методы этой науки неприменимы для манипуляций с химическими формулами. Однако у химиков есть свои методы, да и математические формулы они тоже активно используют.

Отдельно можно выделить четвертый тип формул, связанный с диаграммами, соответствующими реакциям в самых разных науках. Это или схемы, или одна из форм математической записи, т. е. они выделяются скорее по форме, чем по содержанию, и демонстрируют заметное разнообразие, если их не сортировать по подклассам. В первую очередь здесь стоит назвать диаграммы Фейнмана. В данном случае речь идет не просто о визуализации, а о методе, упрощающем вычисления. Так что с некоторыми оговорками можно считать эти диаграммы подвидом формул второго типа.

Нас в первую очередь будут интересовать формулы в физике (законы природы) и стоящая за ними математика, обеспечивающая аппарат манипулирования. Вместе это страшная сила. Как пишет Михаил Громов, «математика заполняет своим огнем все, что зовется физическими науками: облака, скрывавшие от нас то, что теперь мы пишем как законы природы, рассеиваются в лучах такой физики»[4].

Сама идея законов природы довольно нетривиальна. На первом шаге речь идет о том, что мы можем выявить в природе строго выполняющиеся закономерности, которые можно записать в виде математических соотношений. Отсюда один шаг до восприятия мира как машины с четкой предсказуемостью всех будущих событий. Интересно, что дальнейшее движение «той же тропой» привело в итоге к отказу от строгого детерминизма механистических моделей благодаря, например, созданию таких теорий, как хаотическая динамика и квантовая механика. Но в начале пути строгого математического описания природы (без божественного вмешательства, например) мы видим именно детерминизм.

Как бы то ни было, можно сказать, что настоящая наука появилась, когда ученые начали предпринимать попытки выявить именно законы природы. Эта концепция требует веры в то, что естественные процессы происходят по неким неизменным правилам, т. е. что мы не живем в мире случайностей и чудес (возможно, с оговоркой, что нечто, кажущееся в данный момент чудом, найдет свое объяснение в рамках более общего закона природы). Если исходить из этой точки зрения, то одним из первых ученых является Евдокс Книдский (IV век до н. э.)[5]. Ему принадлежит первая серьезная попытка создать модель «Вселенной» (в том объеме, в каком ее воспринимали древние греки), т. е. представить движение небесных тел (Солнца, Луны, пяти видимых невооруженным глазом планет) в виде набора концентрических сфер, можно сказать «шестеренок». И речь не идет о том, чтобы ограничиться словесным описанием. Целью Евдокса Книдского было именно создание четкой конструкции, позволяющей рассчитывать траектории небесных объектов. Такую модель при желании можно воплотить в металле в виде механического устройства, если бы это позволяли технические возможности того времени. Тогда можно было бы, «вращая ручку», прокручивать движение планет в будущее или прошлое, демонстрируя их конфигурацию в любой момент времени. При этом очевидно, что все это бесконечно далеко от магии. Евдоксу Книдскому не могло бы прийти в голову, что, создав правильную модель и воплотив ее в бронзе, он сможет «подкручивать» шестеренки, меняя тем самым движение светил. Иными словами, законы природы представлялись греческому ученому некой объективной реальностью, существующей независимо, а потому не подверженной магическому воздействию.

Представление о мире как о гигантском часовом механизме, с одной стороны, очень вдохновляющее, а с другой — отчасти пессимистическое. Сделаем небольшое отступление. В наши дни прогресс в математике заметно отличается от прогресса в естественных науках (будем для определенности говорить о физике). В физике мы понимаем, что практически любой фундаментальный теоретический результат в той или иной степени неокончателен, неполон. Мы всегда работаем с приближенными моделями, обладая недостаточной информацией. На смену ньютоновской механике пришли теория относительности (даже две!) и квантовая механика. Надеемся, их сменит какой-то вариант квантовой гравитации. Будет ли это «окончательной теорией»? Мы не знаем, мы сомневаемся. В математике, если теорема доказана, то она доказана. Это результат на века. Заменить можно только математику целиком (да и то все старые результаты останутся верными в рамках исходной концепции, как шахматные композиции, если вдруг поменять правила игры). Вернемся к механистической картине мира. Представляется, что ощущения ученых, занимавшихся физикой в XVII–XVIII веках, скорее походили на ощущения математиков, только были глобальнее, поскольку они, что очевидно, непосредственно связаны со всей большой Вселенной. Работавшие в те времена физики вполне могли представлять, что напрямую постигают истинную структуру мира, божественный замысел (если им была нужна эта гипотеза). Законы природы, если они представлялись надежно установленными, выглядели окончательными и не подлежащими пересмотру.

Идея законов природы, подчиняющихся математическим закономерностям, еще более нетривиальна. Именно на этом основано утверждение Юджина Вигнера о непостижимой эффективности математики[6], к которому мы будем неоднократно возвращаться. Ведь одно дело — провести эксперименты или наблюдения, а затем на их основе сформулировать закон в виде математического выражения, и совсем другое — взять математическую формулировку закона, добавить новые гипотезы, провести некоторые математические операции и получить новый, доселе неизвестный закон природы, который потом можно проверить и найти полное совпадение теоретического предсказания с экспериментальным результатом!

Здесь начинает проявляться одна из «магических» особенностей математических формул в роли законов природы. Что-то там написав на бумаге (т. е. проделав манипуляции с математическими символами), можно предсказать положение неизвестной планеты и некоторые из ее свойств, а можно — существование элементарной частицы, определить, из чего состоят частицы, казавшиеся элементарными. Это дает ощущение удивительного единства мира, подчиняющегося относительно простым, по крайней мере постигаемым, правилам, что удивляло и самого Эйнштейна: «Самое непостижимое в этом мире — это то, что он постижим». Для тех же, кто не постигает мир посредством математически сформулированных законов, все это выглядит как волшебство, а ученые воспринимаются как маги. То ли добрые, то ли нет.

Итак, многие люди боятся формул и считают их чем-то сродни магии, а потому, не понимая смысла, относятся к печатной странице, исписанной математическими выражениями, со специфическим уважением. Статья по теоретической физике может выглядеть для них как некий странный артефакт, принципиально отличающийся от страницы обычного текста на непонятном языке.

А. В ИСТОРИИ ФИЗИКИ ЕСТЬ НЕМАЛО ПРИМЕРОВ ТОГО, ЧТО ОПИСАНИЕ РЯДА ЯВЛЕНИЙ, КАЗАВШИХСЯ НЕ СВЯЗАННЫМИ ДРУГ С ДРУГОМ, УДАЛОСЬ ПРОВЕСТИ В РАМКАХ ОБЩЕГО ПОДХОДА. ФИЗИЧЕСКАЯ РЕАЛЬНОСТЬ ПРЕДСТАВЛЯЕТСЯ ЕДИНОЙ СТРУКТУРОЙ, ЭЛЕМЕНТЫ КОТОРОЙ ФУНКЦИОНИРУЮТ ПО ЕДИНЫМ ПРАВИЛАМ. ДАЛЕКО НЕ ВСЕ ВЗАИМОСВЯЗИ ВНУТРИ ЭТОЙ СТРУКТУРЫ НАМ ИЗВЕСТНЫ. ОДНАКО РАБОЧАЯ ГИПОТЕЗА СОСТОИТ В ВОЗМОЖНОСТИ ПОСТРОЕНИЯ ЕДИНОЙ ТЕОРИИ, ИЗ КОТОРОЙ ЗАКОНЫ ДЛЯ ВСЕХ КОНКРЕТНЫХ ЗАВИСИМОСТЕЙ МЕЖДУ ФИЗИЧЕСКИМИ ВЕЛИЧИНАМИ МОГУТ БЫТЬ ВЫВЕДЕНЫ С ПОМОЩЬЮ МАТЕМАТИЧЕСКИХ МЕТОДОВ.

Б. ИСПОЛЬЗОВАНИЕ МАТЕМАТИКИ ПОЗВОЛЯЕТ НА ОСНОВЕ УЖЕ ВЫЯВЛЕННЫХ ВЗАИМОСВЯЗЕЙ МЕЖДУ РАЗЛИЧНЫМИ ПРОЦЕССАМИ И ЯВЛЕНИЯМИ ОБНАРУЖИВАТЬ РАНЕЕ НЕИЗВЕСТНЫЕ СВОЙСТВА ФИЗИЧЕСКИХ ОБЪЕКТОВ, ПРЕДСКАЗЫВАТЬ ПОКА НЕ НАБЛЮДАВШИЕСЯ ЯВЛЕНИЯ, А ТАКЖЕ ФОРМУЛИРОВАТЬ НОВЫЕ ЗАКОНЫ ПРИРОДЫ.

Глава 2

Три доски

Представим себе три доски в университетской аудитории. Все они плотно заполнены формулами, но отличаются по смысловой нагрузке. Однако для многих неискушенных зрителей эти доски выглядят практически одинаково. Дело в том, что определить, в каких надписях есть смысл, в каких — нет, а на какой доске отражена некая единая идея, может быть затруднительно.

В данном случае первая доска заполнена абсолютной абракадаброй. На ней написаны несуществующие формулы — случайные сочетания математических символов и букв латинского и греческого алфавитов. На второй изображены известные уравнения, никоим образом не связанные друг с другом, и трудно представить себе контекст, в котором они стали бы элементами единого сюжета. Наконец, последняя доска содержит последовательный вывод некоего закона, т. е. каждое уравнение связано с предыдущим и в итоге мы получаем осмысленный и важный результат.

Давайте сравним чувства, возникшие при взгляде на эти три доски, с ощущениями, которые появились бы у нас в случае, если бы они были заполнены текстом на неизвестном языке. Снова одна доска была бы исписана случайным набором букв (разумеется, с сохранением разбиения на слова, синтаксисом и т. п.), вторая содержала бы реальные слова, но текст выглядел бы как бред, а третья представляла бы собой связный рассказ. Впечатления от доски с формулами и от доски с текстом, как правило, различны. Текст не впечатляет, мы слишком к нему привыкли. Только утверждение, что он имеет дело с древним языком исчезнувшей цивилизации (для любителей экзотики — с инопланетным языком) или секретным шифром, может заставить среднего человека вглядываться в каракули. Тем и притягателен манускрипт Войнича[7]. Тем и красив кодекс Серафини[8]. Мы думаем, что там скрыт какой-то особый смысл (даже зная, что у Серафини его нет, а скорее всего, нет и в манускрипте Войнича[9]). Примерно так же на многих действует страница формул.

Они могут быть просто красивыми. У большинства людей сам вид сложных комбинаций непонятных символов вызывает душевный трепет и ощущение тайны. Магия… Но формула — не заклинание. Это выражение вполне определенной связи между конкретными параметрами. Есть формулы очень известные (такие как E = mc2), есть менее узнаваемые. Некоторые из них выражают наиболее фундаментальные законы, лежащие в основе современного понимания (а значит, и описания) мира.

Страница, исписанная формулами, вызывает бурю самых разных ассоциаций. Одновременно можно вспомнить и то, как трудно что-то давалось в школе или институте, и черные дыры, и атомную бомбу. Мы (многие, возможно, подсознательно) понимаем, что наш мир стоит на формулах, поскольку они лежат в основе техники, а куда всем нам без нее. Странно слышать про низкий авторитет науки, когда одними из самых действенных рекламных слоганов служат словосочетания: «новая формула» и «формула успеха»[10].

Однако важно отметить, что физические формулы (включая самые известные и фундаментальные) существуют не сами по себе, а как часть большой структуры. Они взаимосвязаны друг с другом, и в этом смысл третьей доски. Путем преобразований (следующих определенным правилам) из одних формул можно получать другие. И это не является тавтологией: само обнаружение некоторых связей является научным открытием.

В XIX веке оказалось, что электричество и магнетизм — две стороны одной медали. Появилась теория электромагнитного поля. В начале XX столетия целью стало объединение электромагнетизма с гравитацией. Казалось, Теодор Калуца и Оскар Клейн нащупали перспективный подход[11]. Альберт Эйнштейн тоже посвятил последние годы своей жизни поискам возможностей для такого объединения, однако из этого, к сожалению, ничего не вышло. Зато обнаруженное позже слабое ядерное взаимодействие[12] удалось успешно объединить с электромагнитным в так называемое электрослабое взаимодействие. Это было сделано Стивеном Вайнбергом, Шелдоном Ли Глэшоу и Абдусом Саламом более полувека назад. А уже в 1980-е гг., когда в ЦЕРН были открыты и изучены W — и Z-бозоны, стало ясно, что получены надежные экспериментальные подтверждения верности предложенной ими модели.

Нет больших сомнений, что в будущем удастся добавить в единое описание и сильное ядерное взаимодействие, а также проверить это экспериментально или с помощью наблюдений. Такая теория получила наименование «Великое объединение» (Grand Unification Theory — GUT). Активные работы в этом направлении ведутся с 1970-х гг. Продолжаются и попытки объединения всех четырех фундаментальных взаимодействий в общую модель. Это уже «Теория всего» (Theory of Everything — TOE). Теория струн, которая сейчас у всех на слуху, как раз является одним из подходов к созданию ТОЕ.

В настоящее время считается, что объединение взаимодействий происходит при высоких энергиях взаимодействующих частиц (например, это могло иметь место в новорожденной вселенной). Получить прямые экспериментальные данные в этой области практически невозможно. А потому единые теории — вотчина теоретиков, и основные надежды пока связаны как раз с тем, что на основе известных законов, базирующихся на надежных экспериментальных данных, используя новые гипотезы и всю мощь математического аппарата (нередко для таких целей придумывают новые математические конструкции), можно построить внутренне непротиворечивую теорию, которая, с одной стороны, будет давать верное описание для уже известных явлений, а с другой — предсказывать новые эффекты.

Таким образом, возможность вывода новых формул из уже существующих демонстрирует единство структуры описания, взаимосвязь между разными понятиями и явлениями, процессами и законами. В то же время манипулирование с формулами, которое следует математическим правилам, может приводить к новым открытиям, и это важная сторона «удивительной» эффективности математики в физике. В истории тому есть множество свидетельств.

Классическим примером эффективности (и подтверждением правильности) ньютоновской механики считается открытие Нептуна. Напомним, что на основе наблюдавшихся отклонений в движении Урана Джону Адамсу и Урбену Леверье удалось рассчитать положение новой большой планеты Солнечной системы, и в сентябре 1846 г. это небесное тело было обнаружено астрономами берлинской обсерватории.

В случае открытия Нептуна речь идет не о том, что с помощью математических преобразований получены новые законы природы, а о том, что была триумфально продемонстрирована предсказательная сила теории (в данном случае — ньютоновской механики и теории гравитации), которая к этому времени успела обзавестись мощным математическим аппаратом. Частично новые математические методы развивались именно для решения задач небесной механики. Это один из первых ярких примеров взаимного обогащения физики и математики: математики разрабатывают методы — физики их применяют, у физиков возникают запросы на решение интересных актуальных задач — математики разрабатывают новые методы. Неудивительно, что спустя несколько десятилетий анализ небесно-механических задач привел к новым поразительным результатам сразу и в физике, и математике.

В конце XX века, рассматривая некоторые варианты задачи трех тел, Анри Пуанкаре получил неожиданные решения. Орбиты вели себя нерегулярным образом. Предсказать точное положение тела оказывалось невозможным даже при ничтожной неопределенности в начальных условиях. Это были первые хаотические решения в динамических системах[13].

Такое положение дел сильно удивило бы маркиза Пьера-Симона Лапласа — одного из отцов небесной механики. Ему принадлежит красивая идея воображаемого существа, получившего имя Демон Лапласа, которое, зная положение всех частиц во вселенной, могло бы предсказывать сколь угодно отдаленное будущее. Оказалось, что это невозможно уже в рамках обычной небесной механики (позже квантовая механика внесла свой вклад в непредсказуемость). Сколь угодно малые неопределенности в начальных условиях могут приводить к сколь угодно большим отклонениям в параметрах системы в будущем. Это красивейший пример открытия, сделанного чисто теоретическими методами анализа уравнений.

Если с детерминизмом Лаплас просчитался, то в другом им было сделано интересное предсказание, которое сбылось, правда, снова не совсем так, как это мог себе представить маркиз. Речь о черных дырах. В конце XVIII века Джон Мичелл в Британии и чуть позже (но независимо) Лаплас во Франции пришли к идее существования темных тел, у которых комбинация массы и радиуса такова, что скорость убегания на поверхности (вторая космическая скорость) равна скорости света или превосходит ее.

Идея выглядит крайне простой. Удивительно, что, например, еще Ньютон не написал о подобной возможности, тем более что он придерживался корпускулярной теории света, вполне разумной в его время. Существование темных объектов Мичелла — Лапласа следует из формулы, которую в наше время каждый школьник обязан узнать лет в 15–16.

Сейчас благодаря общей теории относительности мы представляем себе черные дыры совсем не так, как Мичелл и Лаплас. Если для них это были просто тела с более или менее нормальной поверхностью и плотными сплошными недрами, то для нас, в рамках геометрической интерпретации гравитации, черная дыра — это область пространства, окруженная горизонтом, представляющим собой некий аналог мембраны, проницаемой лишь в одну сторону. Пространство так «свернуто», что даже световые лучи не могут выйти из области, ограниченной горизонтом событий, наружу. Попав под горизонт, вещество (за исключением некоторых очень экзотических случаев) движется к сингулярности (которая может иметь нетривиальную форму и структуру), где формально сжимается до бесконечной плотности, что в реальности означает переход в состояние, которое мы не можем описать в рамках известной на данный момент физики. И все это — выводы из теоретической модели. Проверить предсказания о том, что происходит под горизонтом, и даже доказать его существование у какого-нибудь объекта с помощью наблюдений мы пока не можем.

У астрономов есть множество кандидатов в черные дыры. В основном это или черные дыры звездных масс, возникшие в результате коллапса ядер массивных звезд, или сверхмассивные черные дыры в центрах галактик, которые постепенно набирали массу, пока не выросли в гигантов с массой, доходящей иногда до десятков миллиардов масс Солнца. Все эти объекты массивные и компактные настолько, что мы не можем объяснить их свойства в рамках известной физики без привлечения идеи о черной дыре. Все они не демонстрируют присутствие какой бы то ни было поверхности. Формально их приходится называть кандидатами в черные дыры, но, по сути, это черные дыры с астрофизической точки зрения. Разобравшись с наблюдательным статусом этих объектов, можно заниматься вопросом о том, как они устроены, т. е. выяснять, что такое черные дыры с точки зрения физиков. Такие ли это объекты, какими их рисует сейчас общая теория относительности, или есть какие-то отличия, пока незаметные во время наблюдений.

С открытием гравитационно-волновых сигналов от сливающихся кандидатов в черные дыры мы получили, пожалуй, самые надежные на сегодняшний день свидетельства в пользу гипотезы о существовании объектов с горизонтом. По мере развития гравитационно-волновых антенн будут получены еще более сильные аргументы. Кроме того, радионаблюдения помогают увидеть так называемую тень черной дыры при наблюдениях центральных массивных объектов. Это уже удалось сделать в галактике М87 в созвездии Девы[14]. Можно надеяться, что кое-что удастся получить при наблюдениях черной дыры в центре нашей Галактики. В недалеком будущем к этому списку может добавиться центральный массивный объект в Туманности Андромеды. Если и этого покажется мало, то у нас есть еще надежда на другие подходы, например увидеть вспышки, связанные с последними стадиями испарения черных дыр. Это, наверное, будет самым надежным доказательством того, что такие удивительные объекты существуют и мы качественно правильно понимаем их физику (исключая поведение вещества в сингулярности).

Возвращаясь к трем доскам, мы видим, что важно, чтобы и в формульном изложении был сюжет. Так, начав тянуть за ниточку, свитую еще Ньютоном, Мичелл и Лаплас вытянули идею невидимых объектов, которые мы считаем неким прообразом черных дыр. Разбираясь с динамикой тел в Солнечной системе в рамках небесной механики, созданной в существенной мере и трудами Лапласа, ученые столкнулись с парадоксом смещения перигелия Меркурия. Объяснить аномалию, используя идею еще одной планеты, как в случае с Ураном и Нептуном, не получилось. Разгадка была найдена только с созданием общей теории относительности. И тогда, уже в XX веке, вначале благодаря работам Карла Шварцшильда, а затем и многих других ученых (включая Давида Финкельштейна[15], Стивена Хокинга и многих других) возникла современная концепция черных дыр. Вот такой закрученный сюжет!

А. МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ПРИМЕНЕНИИ К ЕСТЕСТВЕННЫМ ЯВЛЕНИЯМ — ЭТО НОВЫЙ ЯЗЫК ОПИСАНИЯ И ОБСУЖДЕНИЯ ПРИРОДЫ, ДАЮЩИЙ ВОЗМОЖНОСТЬ ВЫЯВЛЯТЬ И ОСОЗНАВАТЬ РАНЕЕ НЕИЗВЕСТНЫЕ СВОЙСТВА И ПРОЦЕССЫ. КРОМЕ ТОГО, ЭТОТ ЯЗЫК МОЖЕТ БЫСТРО РАЗВИВАТЬСЯ, СОВЕРШЕНСТВОВАТЬСЯ.

Б. С ТОЧКИ ЗРЕНИЯ ФИЗИКА, МАТЕМАТИКА ВЫГЛЯДИТ КАК НАБОР ХОРОШО УПОРЯДОЧЕННЫХ И НАДЕЖНЫХ ВЗАИМОСВЯЗАННЫХ ДРУГ С ДРУГОМ МЕТОДОВ, ПОЗВОЛЯЮЩИЙ ИССЛЕДОВАТЬ ВЗАИМОСВЯЗИ МЕЖДУ ФИЗИЧЕСКИМИ ПАРАМЕТРАМИ И ВЕЛИЧИНАМИ.

Глава 3

Клубок ниток

На протяжении тысячелетий человечество пытается дать определение, что же такое человек. То ли это «двуногое без перьев», то ли «смеющееся животное», то ли перетрудившаяся обезьяна. У нас противопоставленный большой палец и крупный (при нашей массе тела) сложный мозг, у нас затянувшееся детство и нет шерсти. Людей выделяет также и то, что они одеваются и используют формулы (здесь Диоген Синопский мог бы произнести фразу: «Математики следят за Солнцем и Луной, а не видят того, что у них под ногами» — и скинуть с себя остатки одежды, чтобы предъявить циничный контрпример).

Тем не менее одежда — важная отличительная особенность человека. Здесь вспоминается и Гулливер в стране гуигнгнмов, и миф о грехопадении. Можно создавать одежду из естественных природных элементов, например листьев. Именно так, согласно Книге Бытия, пришлось поступить Адаму и Еве. Можно делать одежду из шкур, что несколько практичнее. Однако все равно таким способом удается создать лишь довольно примитивные вещи.

Напрашивается аналогия между способами укрыть себя, чтобы защитить от внешнего мира, и тем, как человек описывает этот мир. Рано возникающий естественный язык напоминает попытки делать одежду непосредственно из окружающих предметов, подвергая их лишь минимальной обработке. Повязка из листьев, шкура животного… Такая одежда прикрывает наготу и хоть как-то защищает от холода, т. е. удовлетворяет простейшие нужды, но как же далека она от современной одежды во всем ее многообразии (от дизайнерского коктейльного платья до космического скафандра, от спортивного костюма для бега на коньках до пуленепробиваемых жилетов)! Точно так же и ранние версии естественных языков, удовлетворяя простейшие коммуникационные потребности, существенно ограничены с точки зрения точности и охвата описываемых объектов и явлений. Конечно, языки развиваются, поэтому дают возможность выразить широкую гамму чувств и сформулировать множество идей. Уже у древних народов мы находим прекрасные литературные памятники и глубокие философские мысли. Это можно уподобить красивой одежде из дорогого меха. Естественные языки позволяют произносить проникновенные речи, поднимать людей вдохновляющими лозунгами. Но в смысле описания мира они не могут выйти за рамки того, что мы находим в поэме «О природе вещей» Лукреция. Человечеству понадобился новый тип языка, как и принципиально новый подход к изготовлению одежды, где огромным шагом вперед стало изобретение нитей и тканей из них.

Из нитей можно ткать, вязать, плести, шить и даже вышивать. Первые материалы выходили довольно грубыми, но это были еще и не настоящие нити, а жилы, чтобы скреплять ими шкуры и сделать что-то неестественное, зато подходящее для человеческого тела, или плетенные из веток вещи. Их можно сравнить с философским языком. Он все больше отходит от естественного, в нем появляются новые выражения и конструкции, но все-таки используются слова, а это не самые лучшие инструменты в очень многих ситуациях. Манипуляции с естественным языком трудно алгоритмизировать. Создание системы математического описания природы сродни появлению ткачества. Мы теперь не просто описываем мир с помощью естественных слов языка, а можем, образно говоря, соткать, сшить материю, которая идеально ляжет на сложную форму мира, т. е. способны создать огромный гобелен, который не сделать из шкур и листьев.

Естественный язык основан на непосредственном опыте. Язык отражает основные особенности мышления человека (собственно, они развиваются вместе). Наш опыт определяется размерами человеческого тела, возможностями восприятия и обстоятельствами, например системой отсчета. Мы видим, что Солнце, Луна и звезды всходят и заходят, а себя ощущаем находящимися на неподвижной Земле (которая вовсе не кажется нам шаром, а тем более геоидом). Планеты смещаются на фоне звезд. Все обычные тела падают вниз (во времена Аристотеля не было еще шариков с гелием), и чем они тяжелее, тем быстрее достигают земли. Для нас очевидно, что, если сдвинуть предмет, он рано или поздно остановится. И т. д. и т. п. Теперь мы знаем, что мир устроен не совсем так, как нам представлялось. Но для этого понадобилось создать другой язык и научиться получать другой опыт. Это привело и к изменению типа мышления (по крайней мере, у некоторых).

Отличие математики от естественного языка в том, что она внезапно проявляется в реальном мире. Нельзя, бредя по неизведанным землям, вдруг понять: мы видим, что «дыр бул щыл»[16], равно как и что «убеш щур скум». А вот осознать, что колебательные процессы удобно описывать в терминах комплексных переменных, — можно. Равно как и понять, что гравитацию и пространство-время лучше описывать тензорами[17].

Прелесть математического языка в том, что математика активно развивается. Гораздо быстрее, чем естественные языки, поскольку они в основном откликаются на медленные и не столь уж многочисленные изменения во внешней среде (по крайней мере, именно такие изменения чаще остаются в языке, если сравнивать их с экстремальными поэтическими экспериментами). Даже быстрее, чем нужно. Математики как бы непрерывно свивают все новые и новые нити с разными свойствами, из которых можно делать ткани для самых необычных применений. При этом сами эти приложения еще неизвестны[18].

Первые нити и ткани создавались из естественного сырья — льна, шерсти, хлопка… Но постепенно пришло время синтетических тканей, и некоторые из них имеют совершенно удивительные свойства. Нельзя сделать космический скафандр из пальмовых волокон и ангорской шерсти. Даже на Земле постоянно нужны ткани с уникальными характеристиками, чтобы исследовать вулканы или нырять на большую глубину, заживлять раны или ставить спортивные рекорды. Для новых целей и новых миров нам нужны новые материалы. Для описания новых открытий нам также нужен новый язык.

Конец ознакомительного фрагмента.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Все формулы мира предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

1

Вселенная с прописной буквы — это все сущее, наблюдаемое и ненаблюдаемое. Мы не знаем свойств Вселенной, поскольку наблюдаем лишь вселенную. Вот ее параметры нам более или менее известны. Именно о ней здесь речь. Иными словами, когда мы говорим о мультивселенных, то это Вселенная, состоящая из множества вселенных, в одной из которых мы живем.

2

Интересно, что в 2018 г. на Генеральной ассамблее Международного астрономического союза была принята резолюция, призывающая рекомендовать использовать название «закон Хаббла — Леметра».

3

См., например, статью «Сверхсветовое разбегание галактик и горизонты Вселенной: путаница в тонкостях» на сайте «Астронет» (http://www.astronet.ru/db/msg/1194830).

4

. Громов М.Г. Кольцо тайн: вселенная, математика, мысль. — М., МЦНМО, 2017. — С. 3.

5

Примерно на полтора столетия раньше Пифагор и его ученики также выявили несколько важных закономерностей. Однако этой школе явно мешал чрезмерно идеологизированный подход, т. е. некоторая концептуальная зашоренность в подходе к изучению природных явлений.

6

Статья Ю. Вигнера «Непостижимая эффективность математики в естественных науках» доступна в переводе в журнале «Успехи физических наук» за 1968 г. См.: https://ufn.ru/ru/articles/1968/3/f/

7

Иллюстрированный кодекс, написанный на неизвестном языке неизвестным автором предположительно в XV веке. Расшифровать текст не удается. Скорее всего, это и невозможно, поскольку он не имеет смысла.

8

Кодекс Серафини (Codex Seraphinianus) — иллюстрированный кодекс, созданный в 1970-е гг. архитектором Луиджи Серафини. Представляет собой вымышленную иллюстрированную энциклопедию несуществующего мира. Для ее создания автор придумал специальное письмо. Однако текст не имеет смысла, он не является результатом шифровки или использования искусственного языка.

9

Отметим, что регулярно появляются заявления о расшифровке кодекса Войнича. Последнее (на момент написания книги) появилось в мае 2019 г., когда Джерард Чешир из Университета Бристоля заявил о своем успехе (см.: https://indicator.ru/news/2019/05/15/rasshifrovan-manuskript-vojnicha/). Однако и оно сразу же подверглось жесткой критике (см.: https://nplus1.ru/blog/2019/05/15/diditagain) и вскоре было отозвано.

10

Любопытно, что в данном случае, видимо, в сознании слушающего странным образом переплетаются математические и химические формулы. Наверняка, если провести тест и сразу после прослушивания рекламы со словами «формула успеха» попросить написать любую формулу, то получим что-то вроде E = mc2, закона Ома или основного тригонометрического тождества, а не бензольное кольцо или формулу воды. А в случае рекламы со словами «новая формула» в применении к какой-нибудь жидкости — наоборот.

11

В 1921 г. немецкий математик Теодор Калуца представил модель, объединяющую гравитацию и электромагнетизм в пятимерном пространстве Минковского. В рамках этого подхода из уравнений общей теории относительности удалось получить классические уравнения Максвелла.

12

Первые серьезные теоретические модели в этой области появились в 1930-е гг., когда Энрико Ферми начал работать над описанием бета-распада.

13

Детальнее об орбитальном хаосе можно прочесть в 8-й главе книги Иэна Стюарта «Величайшие математические задачи» (М.: Альпина нон-фикшн, 2019).

14

В апреле 2019 г. были представлены изображения центральной части галактики М87, полученные с помощью Телескопа горизонта событий. Удалось рассмотреть линзированное изображение фотонной сферы центральной сверхмассивной черной дыры. Наблюдать черную дыру в нашей Галактике с помощью этой системы телескопов гораздо сложнее, так как наша черная дыра примерно в тысячу раз менее массивна, а значит, во столько же раз меньше ее размер. Из-за этого переменность данного объекта гораздо более быстрая, что не позволяет получить четкую картинку при длительных наблюдениях на Телескопе горизонта событий, продолжающихся несколько часов. Возможно, радикальным выходом является лишь создание системы космических телескопов, работающих как интерферометр в миллиметровом диапазоне длин волн.

15

Благодаря работе К. Финкельштейна, написанной в 1958 г., возникло современное понимание свойств горизонта черной дыры.

16

«Дыр бул щыл» и «убеш щур скум» — цитаты из стихотворения А. Крученых. Пример так называемого заумного языка.

17

Тензор — математический объект. Тензоры удобно представлять как многомерные таблицы (матрицы). Это отличает их от более привычных скалярных величин (одно число) и векторов (одномерный массив чисел), хотя можно рассматривать векторы и скаляры как частные случаи тензоров.

18

Например, такие числа, как седенионы, пока не нашли широкого применения в физике. Однако теоретики пытаются приспособить их для работы над квантовой гравитацией и теорией великого объединения. Младшие братья седенионов, октонионы, тоже пока не слишком востребованы физиками.

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я