Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData

Евгений Сергеевич Штольц, 2020

В этой книге Главный Архитектор Департамента Архитектуры Управления Технической Архитектуры (Центра Облачных Компетенций Cloud Native и Корпоративного университета архитекторов) и архитектор решения Сбербанка делится знаниями и опытом с читателей в области ML, полученных в работе Школе архитекторов. Автор: * проводит читателя через процесс создания, обучения и развития нейронной сети, показывая детально на примерах * повышает кругозор, показывая, какое она может занимать место в BigData с точки зрения Архитектора * знакомит с реальными моделями в продуктовой среде

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Основы для написания сетей.

До 2015 года с большим отрывом лидировала scikit–learn, которую догонял Caffe, но с выходом TensorFlow он сразу стал лидером. Со временем только набирая отрыв с двухкратного на трёхкратный к 2020 году, когда на GitHub набралось более 140 тысяч проектов, а у ближайшего конкурента чуть более 45 тысяч. На 2020 году по убывающей расположились Keras, scikit–learn, PyTorch (FaceBook), Caffe, MXNet, XGBoost, Fastai, Microsoft CNTK (CogNiive ToolKit), DarkNet и ещё некоторые менее известные библиотеки. Наиболее популярными для отрытых проектов на GitHub можно выделить библиотеку PyTorch и TenserFlow. Если смотреть на количество звёздочек на GitHub по библиотекам, то на 2020 год тысяч звёздочек:

* TenserFlow: 153 * Keras: 51 * PyTorch: 46 * Sckit-learn: 45 * Caffe: 31 * MXNet: 19 * CNTK: 17 * Theane: 9 * Caffe2: 8

PyTorch хорошо для прототипирования, изучения и испробования новых моделей. TenserFlow популярен в производственной среде, а проблема низкого уровня описания решается с помощью Keras:

* FaceBook PyTorch — хороший вариант для обучения и прототипирования из–за высокого уровня и поддержки различных сред, динамический граф, может дать преимущества при обучении. Используется в Twitter, Salesforce.

* Google TenserFlow — имел изначально статический граф решения, ныне поддерживается и динамический. Используется в Gmail, Google Translate, Uber, Airbnb, Dropbox. Для привлечения использования в облаке Google под него внедряется аппаратный процессор Google TPU (Google Tensor Processing Unit).

* Keras является высокоуровневой настройкой, обеспечивающей больший уровень абстракции для TensorFlow, Theano или CNTK. Хороший вариант для обучения. К примеру, он позволяет не указывать размерность слоёв, вычисляя её сам, позволяя разработчику сосредоточиться на слоях архитектуры. Обычно используется поверх TenserFlow. Код на нём поддерживается Microsoft CNTK.

Так же имеются более специализированные фреймворки:

* Apache MXNet (Amazon) и высокоуровневая надстройка для него Gluon. MXNet — фреймворк с акцентом на масштабирование, поддерживает интеграцию с Hadoop и Cassandra. Поддерживается C++, Python, R, Julia, JavaScript, Scala, Go и Perl.

* Microsoft CNTK имеет интеграции с Python, R, C#, благодаря тому что большая часть кода написана на С++. То, что вся основа написана на С++, не говорит о том, что CNTK будет обучать модель на C++, а TenserFlow на Python (который медленный), так как TenserFlow строит графы и уже его выполнение осуществляется на C++. Отличается CNTK от Google TenserFlow и тем, что он изначально был разработан для работы в кластерах Azure с множеством графических процессоров, но сейчас ситуация выравнивается и TenserFlow поддерживает кластера.

* Caffe2 — фреймворк для мобильных сред.

* Sonnet — надстройка DeepMind поверх TensorFlow для обучения сверх глубоких нейронных сетей.

* DL4J (Deep Learning for Java) — фреймворк с акцентом на Java Enterprise Edition. Высока поддержка BigData на Java: Hadoop и Spark.

Со скоростью доступности новых предобученных моделей ситуация разнится и пока лидирует PyTorch. По поддержке сред, в частности публичных облаков, лучше у Фреймворках, продвигаемых вендерами этих облаков, так лучше поддержка TensorFlow лучше в Google Cloud, MXNet — в AWS, CNTK — в Microsoft Azure, D4LJ — в Android, Core ML — в iOS. По языкам общая поддержка в Python практически у всех, в частности TensorFlow поддерживает JavaScript, C++, Java, Go, C# и Julia.

Многие фреймворки поддерживают визуализацию TeserBodrd. Он представляет собой комплексный Web интерфейс многоуровневой визуализации состояния и процесса обучения и его отладки. Для подключения нужно указать путь к модели"tenserboard — logdir=$PATH_MODEL"и открыть localhost:6006. Управление интерфейсом основано на навигации по графу логических блоков и открытию интересующих блоков, для последующего повторения процесса.

Для экспериментов нам понадобится язык программирования и библиотека. Часто в качестве языка берут простой язык с низким порогом входа, такой как Python. Могут быть также и другие языки общего назначения, такие как JavaScript или специализированные, такие как язык R. Мы возьмём Python. Для того чтобы не ставить язык и библиотеки, воспользуемся бесплатным сервисом colab.research.google.com/notebooks/intro.ipynb, содержащим Jupyter Notebook. Notebook содержит в себе возможность не просто писать код с комментариями в консольном виде, а оформлять его в виде документа. Испробовать возможности Notebook можно в учебном плейбуке https://colab.research.google.com/notebooks/welcome.ipynb, такие как оформление текста на языке разметки MD, с формулами на языке разметки TEX, запуск скриптов на языке Python, вывод результатов их работы в текстовом виде и в виде графиков, используя стандартную библиотеку Python: NumPy(НамПай), matplotlib.pyplot. Сам Сolab представляет графическую карту Tesla K80 на 12 часов за раз (на сессию) бесплатно. Она поддерживает различные фреймворки глубокого машинного обучения, в том числе, Keras, TenserFlow и PyTorch. Цена же составляет GPU в Google Cloud:

Tesla T4: 1GPU 16GB GDDR6 0.35$/час Tesla P4: 1GPU 8GB GDDR5 0.60$/час Tesla V100: 1GPU 16GB HBM2 2.48$/час Tesla P100: 1GPU 16GB HBM2 1.46$/час

Попробуем. Перейдём по ссылке colab.research.google.com и нажмём кнопку"создать блокнот". У нас появится пустой Notebook. Можно ввести выражение:

10**3 / 2 + 3

и нажав на воспроизведение — получим результат 503.0. Можно вывести график параболы, нажав кнопку"+Код"в введя в новую ячейку код:

def F(x): return x*x import numpy as np import matplotlib.pyplot as plt x = np.linspace(–5, 5, 100) y = list(map(F, x)) plt.plot(x, y) plt.ylabel("Y") plt.xlabel("X")

Или выведя ещё и изображение:

import os!wget https://www.python.org/static/img/python–logo.png import PIL img = PIL.Image.open("python–logo.png") img

Популярные фреймворки:

* Caffe, Caffe2, CNTK, Kaldi, DL4J, Keras — набор модулей для конструирования;

* TensorFlow, Theano, MXNet — программирование графа;

* Torch и PyTorch — прописать основные параметры, а граф будет построен автоматически.

Рассмотрим работу библиотеки PyTorch (NumPy+CUDA+Autograd) из–за её простоты. Посмотрим на операции с тензорами — многомерными массивами. Подключим библиотеку и объявим два тензора: нажмём +Code, введём код в ячейку и нажмём выполнить:

import torch a = torch.FloatTensor([ [1, 2, 3], [5, 6, 7], [8, 9, 10] ]) b = torch.FloatTensor([ [–1, — 2, — 3], [–10, — 20, — 30], [–100, — 200, — 300] ])

Поэлементные операции, такие как"+","–","*","/"над двумя матрицами одинаковых габаритов производят операции с соответствующими их элементами:

a + b tensor([ [ 0., 0., 0.], [ — 5., — 14., — 23.], [ — 92., — 191., — 290.] ])

Другим вариантом поэлементной операции является применение одной операции ко всем элементом по одиночке, например умножение на — 1 или применение функции:

a tensor([ [ 1., 2., 3.], [ 5., 6., 7.], [ 8., 9., 10.] ]) a * — 1 tensor([ [ — 1., — 2., — 3.], [ — 5., — 6., — 7.], [ — 8., — 9., — 10.] ]) a.abs() tensor([ [ 1., 2., 3.], [ 5., 6., 7.], [ 8., 9., 10.] ])

Также имеются операции свёртки, такие как sum, min, max, которые на входе дают сумму всех элементов, самый маленький или самый большой элемент матрицы:

a.sum() tensor(51.) a.min() tensor(1.) a.max() tensor(10.)

Но нам будут больше интересны постолбцовые операции (операция будет производиться над каждым столбцом):

a.sum(0) tensor([14., 17., 20.]) a.min(0) torch.return_types.min( values=tensor([1., 2., 3.]), indices=tensor([0, 0, 0]) ) a.max(0) torch.return_types.max( values=tensor([ 8., 9., 10.]), indices=tensor([2, 2, 2]) )

Как мы помним, нейронная сеть состоит из слоёв, слои состоят из нейронов, а нейрон содержит на входе связи с весами в виде простых чисел. Вес задаётся обычным числом, тогда входящие связи в нейрон можно описать последовательностью чисел — вектором (одномерным массивом или списком), длина которого и есть количество связей. Так как сеть полносвязная, то все нейроны этого слоя связаны с предыдущим, а, следовательно, демонстрирующие их вектора имеют тоже одинаковую длину, создавая список равных по длине векторов — матрицу. Это удобное и компактное представление слоя, оптимизированное для использования на компьютере. На выходе нейрона имеется функция активации (сигмойда или, ReLU для глубоких и сверхглубоких сетей), которая определяет, выдаст на выходе нейрон значение или нет. Для этого необходимо применить её к каждому нейрону, то есть к каждому столбцу: мы уже видели операцию к столбцам.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я