Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил

Smart Reading, 2020

Этот текст – сокращенная версия книги Кэти О'Нил «Оружие математического поражения». Только самые ценные мысли, идеи, кейсы, примеры. О книге Кэти О'Нил, бывший аналитик с Уолл-стрит, в своей книге «Оружие математического поражения» знакомит общественность с тревожным симптомом. Математические модели, которые пронизывают современную жизнь, угрожают разрывом социальных связей. Мы живем в эпоху алгоритма. Решения, которые оказывают влияние на нас, принимаются не людьми, а машинами. Теоретически это должно приводить к справедливому распределению благ: если всех судят по одним правилам, значит, предвзятость устранена. Однако на деле математические модели, которые работают с большими данными, непрозрачны, их невозможно проверить и отрегулировать. Модели поддерживают счастливчиков и наказывают угнетенных. Кэти О'Нил призывает разработчиков брать на себя ответственность за свои алгоритмы, а политиков – регулировать их использование. Зачем читать • Взглянуть на BigData с критической точки зрения, проанализировать их пользу и перспективность. • Ознакомиться с доступными практическими примерами исследований современных математических моделей. • Углубить экспертные знания аналитиков и маркетологов в области BigData. Об авторе Кэти О'Нил – обладательница степени PhD по математике Гарвардского университета. Работала на математическом факультете Массачусетского технологического института. В разгар кредитного кризиса служила частным аналитиком в хедж-фонде D. E. Shaw. Обозреватель Bloomberg View и автор блога mathbabe.org. Участница группы Альтернативного банкинга движения Occupy Wall Street, а также стартапов в области систем, предсказывающих покупки и клики. Основатель и директор аудиторской компании ORCAA.

Оглавление

Из серии: Smart Reading. Ценные идеи из лучших книг

* * *

Приведённый ознакомительный фрагмент книги Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Оригинальное название:

Weapons of Math Destruction: How Big Data Increases Inequality and Threatens

Автор:

Cathy O'Neil

Тема:

Обязательное чтение

Правовую поддержку обеспечивает юридическая фирма AllMediaLaw

www.allmedialaw.ru

Введение

Начало активного развития экономики Big Data пришлось на 2008—2010 гг., когда математики и специалисты в области статистики погрузились в изучение жизни человека: его желаний, интересов, физических возможностей и психологических особенностей. Их главной целью стало научиться оценивать, предугадывать и влиять на действия homo sapiens в работе, обучении, сексе, контролировать лояльность людей к идеям.

Но «что-то пошло не так», и Big Data стали превращаться в оружие математического поражения. Один из главных просчетов специалистов в том, считает автор, что созданные математическим путем приложения слишком часто базируются на ошибочных алгоритмах поведения человека. Вынесенные самообучающейся программой вердикты не анализируются и не обсуждаются в обществе. Кроме того, сегодня очевидно, что ущемляются права обычных людей. Если несправедливость выводов алгоритма по отношению к себе заметит обеспеченный человек, то он сможет добраться до причин и восстановить справедливость. Кто небогат, либо не заметит ошибку машины, либо не будет располагать ресурсами для ее исправления.

Так, соискателю могут отказать в работе из-за выводов Big Data о его слишком низком кредитном рейтинге или криминальном прошлом. Иногда это происходит из-за сбоя программы, по ошибке. Но жертва почти гарантированно не узнает, что в действительности послужило причиной неудачи. Несправедливость проявляется в разных сферах жизни: алгоритм склоняет людей к получению необоснованно дорогого образования, переплате за страховки, дорогим кредитам и т. д. В итоге бедные становятся еще беднее.

Богатым же алгоритм помогает ставиться еще богаче и влиятельнее. Они имеют доступ к данным исследований поисковых систем и социальных сетей, могут пользоваться их инструментами влияния на пользователей. Недавние скандалы, связанные с участием Facebook в сборе и незаконном распространении персональных данных, — только вершина айсберга. Есть все основания полагать, что Google и Facebook заходят намного дальше, лоббируя интересы партий и конкретных кандидатов.

Сложившуюся ситуацию необходимо менять. И не только из-за растущей несправедливости и разрыва между бедными и богатыми. Просчеты в алгоритмах Big Data могут превратиться в настоящую катастрофу в обозримом будущем, когда вся информация из интернета будет стекаться в недра AI — искусственного интеллекта. Невозможно спрогнозировать, что мы получим на выходе.

Поэтому всем, кто имеет отношение к Big Data, необходимо ответственнее подходить к разработке новых алгоритмов. Уже работающие модели должны быть проанализированы и исправлены совместными усилиями ученых и общественности. Но самое главное — человечество должно изменить само определение успешности возможностей Big Data. Вместо служения прибыли они должны научиться служить людям.

Ознакомившись с саммари, вы поймете опасность текущих трендов в развитии Big Data. Научитесь избегать ошибок в процессе трудоустройства и отличать социальную рекламу в соцсети от проводимых над вами опытов. Узнаете, кто и как вас склоняет к голосованию за того или иного кандидата. Разберетесь в том, какие шаги необходимы для исправления ситуации.

Оглавление

Из серии: Smart Reading. Ценные идеи из лучших книг

* * *

Приведённый ознакомительный фрагмент книги Ключевые идеи книги: Оружие математического поражения: как технология Big Data усугубляет неравенство и угрожает демократии. Кэти О'Нил предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я