Основы ТРИЗ. Теория решения изобретательских задач. Издание 2-е, исправленное и дополненное

Владимир Петров

2-е издание учебника посвящено системному изложению теории решения изобретательских задач (ТРИЗ). В книге рассмотрены методы постановки и решения нестандартных задач, законы развития систем, вепольный анализ, способы выявления и разрешения противоречий, выявления и использования ресурсов.Материал иллюстрируется большим количеством примеров, задач и графического материала.Книга предназначена студентам, преподавателям, инженерам, изобретателям, ученым и людям, решающим творческие задачи.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Основы ТРИЗ. Теория решения изобретательских задач. Издание 2-е, исправленное и дополненное предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Глава 3. СИСТЕМНЫЙ ПОДХОД

Кто в океане видит только воду,

Тот на земле не замечает гор.

В. Высоцкий

Содержание главы 3:

3.1. Основные определения системного подхода

3.1.1. Системное мышление

3.1.2. Система

3.1.3. Функция

3.1.4. Поток

3.1.5. Иерархия

3.2. Системность

3.2.1. Общие понятие

3.2.2. Отсутствие системности

3.3. Системный оператор

3.4. Учет влияний

3.5. Системный подход при проектировании

3.5.1. Системный синтез

3.5.2. Системный анализ

3.5.3. Анализ выявления недостатков

3.6. Выводы

3.1. Основные определения системного подхода

Выше на притче о слепцах (п. 1.4, пример 1.11) мы показали одну из составляющих традиционного мышления — отсутствие системного мышления.

Часто, решая задачи или исследуя какую-то систему, мы похожи на этих слепцов. Мы рассматриваем только маленькую часть задачи или часть системы, а этого часто бывает недостаточно. Мы даже не всегда знаем ее составляющие — подсистемы, а тем более части этих составляющих — подподсистемы. Не видим, куда входит данная система. Все это показывает отсутствие системного подхода.

Ниже приведем основные определения и составные части системного подхода.

3.1.1. Системное мышление

Системное мышление — это мышление, которое использует системный подход и является одним из элементов изобретательского мышления.

Системный подход — рассмотрение объекта как целостного множества элементов в совокупности отношений и связей между ними, то есть рассмотрение объекта как системы.

Системный подход должен использоваться как при анализе, так и при синтезе систем.

При системном анализе рассматривают систему не изолированно, а как совокупность взаимосвязанных элементов, имеющую связь с надсистемой и внешней средой и влияние внешней среды на систему. Цель анализа выявить все составляющие элементы, взаимосвязи и взаимовлияния между ними, приводящие к определенным изменениям. Выявляются все взаимовлияния системы на подсистемы, на надсистему и окружающую систему, и обратное влияние надсистемы и окружающей среды на систему. Прослеживаются все закономерности изменений, функционирования и развития систем.

Системный синтез предусматривает создание сбалансированной системы, как внутри себя, так и с внешней средой.

Системный подход реализует требования общей теории систем, согласно которой каждый объект должен рассматриваться как большая и сложная система и, одновременно, как элемент более общей системы. Теория систем изучает различные виды систем, их функционирование и закономерности развития. Она была разработана Людвигом фон Берталанфи (Ludwig von Bertalanffy) в XX веке. Его предшественником был Александр Александрович Богданов, который разработал «всеобщую организационную науку» тектологию и предвосхитил некоторые положения кибернетики.

Основным объектом рассмотрения в системном подходе, теории систем, системном анализе и синтезе является система.

3.1.2. Система

Система (от латинского «systēma», от греческого «σύστημα» «составленный», целое, составленное из частей, соединение) — это множество элементов, взаимосвязанных и взаимодействующих между собой, которые образуют единое целое, обладающее свойствами, не присущими составляющим его элементам, взятым в отдельности.

Такое свойство называют системный эффект или эмерджентность.

Эмерджентность (от англ. «Emergent» возникающий, неожиданно появляющийся) в теории систем наличие у какой-либо системы особых свойств, не присущих ее подсистемам и блокам, а также сумме элементов, не связанных особыми системообразующими связями; несводимость свойств системы к сумме свойств ее компонентов; синоним «системный эффект».

Часто такое свойство так же называют синергетический эффект (от греч. «συνεργός» вместе действующий) возрастание эффективности деятельности в результате интеграции, слияния отдельных частей в единую систему за счет так называемого системного эффекта.

Пример 3.1. Синергетический эффект

Обмен вещами не приводит к синергетическому эффекту, так как их остается, столько же, что и было. Обмен идеями приводит к синергетическому эффекту, так как в результате у одного человека идей становится больше.

Синерги́я (греч. «Συνεργία» сотрудничество, содействие, помощь, соучастие, сообщничество; от греч. «Σύν» вместе, греч. «ἔργον» дело, труд, работа, (воз) действие) суммирующий эффект взаимодействия двух или более факторов, характеризующийся тем, что их действие существенно превосходит эффект каждого отдельного компонента в виде их простой суммы.

Целостность — характеристика системы, выражающая автономность и единство системы, противостоящей окружению. Она связана с функционированием системы и присущими ей закономерностями развития. Целостность не абсолютное, а относительное понятие, поскольку система имеет множество связей с окружающими объектами и внешней средой и существует лишь в единстве с ними.

Свойство сторона (атрибут) системы. Оно определяет различие или общность предмета с другими предметами. Свойство обнаруживается в отношении подсистем в системе, поэтому всякое свойство относительно. Свойства существуют объективно, независимо от человеческого сознания.

Отношение взаимосвязь, взаимозависимость и соотношение элементов системы. Это мысленное сопоставление различных объектов и их сторон.

Пример 3.2. Предложение (в языке)

Предложение состоит из слов и способа построения предложения — грамматики.

Ни один из этих элементов не обладает свойством выразить мысль. Соединенные в единую систему — предложение, приобрело новое свойство — мысль — системный эффект.

Предложение — целостно. Оно автономно и имеет свои закономерности развития — развитие грамматики.

В предложении показана взаимосвязь отдельных слов, их свойства, обнаруживаемы в их отношении друг к другу.

Антропогенная система (греч. «anthropos» — человек, «genesis» — происхождение, становление развивающегося явления) — система, созданная в результате сознательно направленной человеческой деятельности.

Пример 3.3. Антропогенные системы

Это широкий класс систем, созданных человеком: язык, понятия, мысли, знания, науки, литература и искусство, социальные группы (племена, сообщества, государства и т. д.), сельскохозяйственные системы, искусственно созданные объекты фауны и флоры (генная инженерия, биотехнологии и т. п.), технические системы и т. д.

Основное внимание в книге будет уделено рассмотрению одного класса антропогенных систем — технических систем.

Техническая система (ТС) — это система, создающаяся с конкретной целью для удовлетворения определенной потребности. Она выполняет функцию, осуществляя процесс. ТС имеет определенную структуру. В качестве примеров технических систем можно назвать: самолет, автомобиль, кондиционер, телефон, телевизор, компьютер, Интернет и т. д.

Пример 3.4. Самолет

Самолет состоит из крыльев, фюзеляжа, двигателя, шасси и т. д.

Ни один из этих элементов не обладает свойством летать. Соединенные в единую систему — самолет приобрел новое свойство — летать — системный эффект.

Пример 3.5. Телефон

Телефон состоит из микрофона, наушника, клавиатуры, дисплея, памяти и т. п.

Ни один из этих элементов не обладает свойством передавать звук на рассеяние. Соединенные в единую систему — телефон приобрел новое свойство — передавать звук на расстояние — системный эффект.

Пример 3.6. Алгоритм

Алгоритм — это определенный порядок выполнения различных операций, приводящий к конкретному результату.

Алгоритм состоит из отдельных операций, выполняемых в определенном порядке.

Каждая из операций и порядок их выполнения в отдельности не приведут к необходимому результату. Соединенные в единую систему — алгоритм приобрел новое свойство — конкретный результат — системный эффект.

3.1.3. Функция

Функция (от лат. «functio» — совершение, исполнение) — процесс воздействия субъекта на объект, имеющий определенный результат.

Кроме того, функцию определяют и как «внешнее проявление свойств

какого-либо объекта в данной системе отношений».

В дальнейшем будем использовать первую формулировку функции (рис. 3.1).

Рис. 3.1. Функция

Результат действия может быть изменение параметра объекта или сохранение его.

Функция записывается в виде глагола.

Пример 3.7. Самолет

Самолет перевозит (перемещает) пассажиров. Самолет — субъект, перевозит — функция, пассажиры — объект. Перевозить — это значит изменять объект.

Пример 3.8. Кофе

Чашка удерживает кофе. Чашка — субъект, удерживает — функция, кофе — объект. Удерживать — это значит сохранять объект.

Пример 3.9. Компьютер

Компьютер обрабатывает информацию. Компьютер — субъект, обрабатывает — функция, информация — объект. Обрабатывать — это значит изменять объект (информацию).

Пример 3.10. Компьютерная память

Память запоминает информацию. Память — субъект, запоминает — функция, информация — объект. Запоминать — это значит сохранять объект (информацию).

Функции можно классифицировать по:

полезности,

степени их выполнения:

Опишем классификацию функций по:

1. Полезности:

полезные;

бесполезные;

вредные.

2. Степени выполнения полезных функций:

достаточные;

избыточные;

недостаточные.

Полезная функция — функция, обеспечивающая работоспособность системы.

Бесполезная функция — функция, не создающая работоспособность системы. Иногда такие функции называют лишними.

Вредная функция — функция, создающая нежелательный эффект.

Достаточная функция — функция, создающая необходимое (достаточное) действие.

Избыточная функция — функция, создающая избыточное действие.

Недостаточная функция — функция, создающая недостаточное действие.

Пример 3.11. Холодильник

Функция холодильника — охлаждать продукт, например, мясо.

Бесполезная функция для потребителя — нагрев задней части холодильника, но она необходима для принципа действия холодильника. Потребителю этот нагрев не нужен.

Вредная функция холодильника — шум компрессора.

Достаточная функция холодильника — нормальное охлаждение до заданной температуры.

Избыточная функция холодильника — это избыточное охлаждение (переохлаждение) — ниже требуемой температуры.

Недостаточная функция холодильника — недостаточное охлаждение — выше требуемой температуры.

Пример 3.12. Газовая плита

Функция газовой плиты — греть объект, например, воду или мясо.

Бесполезная функция газовой плиты — нагрев окружающей среды (лишний расход тепла).

Вредная функция газовой плиты — утечка газа.

Достаточная функция газовой плиты — нормальный нагрев объекта до заданной температуры.

Избыточная функция газовой плиты — избыточный нагрев объекта, например, вода выкипела, мясо сгорело.

Недостаточная функция газовой плиты — слабый огонь, например, недостаточный для закипания воды.

Пример 3.13. Компьютер

Функция компьютера — обрабатывать информацию.

Бесполезная функция — затраты энергии, когда на компьютере не работают, а он включен. Компьютер должен работать только тогда, когда вводится, обрабатывается и выводится информация. Во все остальное время компьютер впустую расходует энергию.

Вредные функции компьютера — электромагнитное излучение от компьютера и Wi-Fi, шум от вентилятора.

Достаточная функция компьютера — его нормальная работа.

Недостаточная функция компьютера — когда происходит долгая обработка информации, например, при скачивании информации из Интернета.

Пример 3.14. Телефон

Функция телефона — передавать звуковой сигнал, например, речь.

Бесполезная функция. Если телефон включен, а по нему не говорят — бесполезная функция. Телефон должен работать только тогда, когда передается сигнал. Во все остальное время телефон впустую расходует энергию. В любые перерывы сигнала телефон должен отключаться и включаться с появлением сигнала.

Вредная функция. Электромагнитное излучение, возникающее при разговоре по мобильному телефону, вредно воздействует на окружающую аппаратуру, поэтому в самолетах и в больницах не разрешается разговаривать по мобильному телефону. Антенны ретрансляторов мобильной связи вредно воздействуют на окружающих.

Достаточная функция телефона — когда телефон работает нормально.

Избыточная функция телефона — когда звук передается слишком сильно, и он искажается.

Недостаточная функция телефона — когда сигнал плохо слышен.

Пример 3.15. Автомобиль

Функция автомобиля — перемещать людей.

Бесполезная функция автомобиля — затраты энергии, когда автомобиль стоит, а двигатель работает, например, на светофоре.

Вредные функции автомобиля — выбрасывание в атмосферу выхлопных газов, загрязняя окружающую среду.

Достаточная функция — нормальная работа автомобиля.

Избыточная функция. Автомобиль рассчитан на скорость движения, значительно превышающую допустимую скорость.

Недостаточная функция — это, когда автомобиль не можем выбраться из заноса снега, грязи или преодолеть очень крутой подъем.

В определение функции входило понятие процесс.

3.1.4. Процесс

Процесс (от лат. «processus» — продвижение):

1) последовательная смена состояний стадий развития;

2) совокупность последовательных действий для достижения какого-либо результата (например, производственные потребности — последовательная смена трудовых операций).

Для функционирования технических систем мы в основном будем рассматривать второе определение. Первое определение характерно для развития систем.

Пример 3.16. Приготовление кофе

Операция 1 — измельчение зерен кофе.

Операция 2 — молотый кофе засыпается в турку.

Операция 3 — турку заливается водой.

Операция 4 — турку ставят на огонь или помещают в разогретый песок.

Операция 5 — ждут, пока поднимется пенка.

Операция 6 — турку снимают с огня.

Операция 7 — ожидание пока пенка опустится.

Операции 5—7 повторяются несколько раз.

Пример 3.17. Компьютерная программа

Любая компьютерная программа работает по определенному алгоритму — порядку действий. Таким образом, компьютерная программа осуществляет процесс.

Пример 3.18. Алгоритм Евклида

В качестве процесса представим Алгоритм Евклида — метод вычисления наибольшего общего деления (НОД). Это один из древнейших алгоритмов, который используется до сих пор. НОД — это число, которое делит без остатка два числа и делится само без остатка на любой другой делитель данных двух чисел. Проще говоря, это самое большое число, на которое можно без остатка разделить два числа, для которых ищется НОД.

Описание алгоритма нахождения НОД деланием.

1. Большее число делим на меньше число.

2. Если длится без остатка, то меньшее число и есть НОД (следует выйти из цикла).

3. Если есть остаток, то большее число заменяем на остаток от деления.

4. Переходим к пункту 1.

Пример:

Найти НОД для 30 и 18.

30/18 = 1 (остаток 12);

18/12 = 1 (остаток 6);

12/6 = 2 (остаток 0). Конец: НОД — это делитель. НОД (30, 18) = 6.

Пример 3.19. Компилятор

Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен процессором.

Процесс компиляции состоит из следующих этапов:

1. Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем. Цель лексического анализа — подготовить входную последовательность к грамматическому анализу.

2. Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в дерево разбора.

3. Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) — например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.

4. Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах — например, над промежуточным кодом или над конечным машинным кодом.

5. Генерация кода. Из промежуточного представления порождается код на целевом языке. В конкретных реализациях компиляторов эти этапы могут быть разделены или наоборот совмещены в том или ином виде.

Каждый из этих этапов имеет свою программу, работающую по определенному алгоритму — процессу.

Понятия процесс и функция тесно связаны с понятием поток. Он осуществляет процесс и выполняет функцию.

3.1.5. Поток

Поток может быть:

вещественным (поток вещества);

полевым (поток поля);

информационным (поток информации).

К вещественным потокам относятся все виды транспортных систем, потоки сыпучих, жидких и газообразных веществ, в частности использующих, трубопроводы, например, пневматическая почта и т. д.

К полевым потокам можно отнести потоки электричества, например, проходящие по проводам, световые потоки, например, по оптоволоконным кабелям, магнитные потоки, различные излучения и т. д.

Информационные потоки могут распространяться различными путями: через печатные материалы, Интернет, радио и телевидение и т. д. Носителями информации является вещество и / или поле (энергия).

Кроме того, потоки могут быть внутренние и внешние.

Потоки осуществляют взаимодействия и выполняют работу.

Внутренние потоки осуществляют воздействия одного элемента системы на другой или их взаимодействие по организованным связям между ними.

Внешние потоки осуществляют взаимодействие системы с надсистемой, окружающей средой и обратное влияние надсистемы и окружающей среды на систему.

Отсутствие учета таких влияний может не только отрицательно сказаться на работоспособности системы, но и вредно влиять на внешнюю среду.

Пример 3.20. Кондиционер

Кондиционер, с помощью вентилятора, создает поток воздуха (холодного или горячего). Это внешний поток вещества.

Поток фреона — это внутренний поток вещества.

Электричество, подводимое извне, к блоку питания кондиционера — это внешний поток энергии. Потоки энергии от блока питания — это внутренние поток энергии, подводимые к компрессору, вентилятору и блоку управления.

Сигналы, поступающие от датчиков и подающие на компрессор и двигатель вентилятора и другие блоки — это внутренние потоки информации. Инфракрасный сигнал от пульта управления — это внешний поток информации.

Пример 3.21. Компьютер

В компьютер поступает поток внешней информации. Компьютер обрабатывает эту информацию. Это внутренний информационный поток. Компьютер выдает результаты обработанной информации на внешние устройства, например, на монитор — это внешний информационный поток.

Оценку потоков можно проводить по:

Полезности.

Степени их выполнения.

Опишем оценку потока:

1. По полезности:

полезный;

бесполезный;

вредный.

2. По степени выполнения полезности потока:

достаточный;

избыточный;

недостаточный.

Полезный поток — поток, обеспечивающий работоспособность системы.

Бесполезный поток — поток, не создающий работоспособность системы. Иногда такие потоки называют лишними.

Вредный поток — поток, создающий нежелательный эффект.

Достаточный поток — поток, создающий необходимое (достаточное) действие.

Избыточный поток — поток, создающий избыточное действие.

Недостаточный поток — поток, создающий недостаточное действие.

Пример 3.22. Холодильник

Бесполезный поток для потребителя — поток тепла от испарителя (задней части холодильника).

Вредный поток холодильника — поток (акустический) шума компрессора.

Достаточный поток холодильника — нормальный поток холодного воздуха внутри холодильника. Избыточный поток холодильника — это избыточный поток холодного воздуха (переохлаждение) — ниже требуемой температуры.

Недостаточный поток холодильника — недостаточный поток холодного воздуха, не позволяющий создать требуемую температуру.

Пример 3.23. Компьютер

Бесполезный поток — поток энергии, когда на компьютере не работают, а он включен. Поток электроэнергии в компьютере должен быть только тогда, когда вводится, обрабатывается и выводится информация. В остальное время компьютер впустую расходует энергию. Кроме того, поток энергии должен подаваться только к тем частям, которые в данный момент работают.

Вредный поток компьютера — поток электромагнитного излучения от компьютера и Wi-Fi, поток шума от вентилятора.

Достаточный поток — поток электроэнергии и информации, необходимый для нормальной работы компьютера.

Недостаточный поток — недостаточный поток электроэнергии и информации, необходимый для нормальной работы компьютера, например, разряженная батарея, когда происходит долгая обработка информации, например, при скачивании информации из Интернета.

Пример 3.24. Автомобиль

Бесполезный поток — поток бензина, когда автомобиль стоит, а двигатель работает, например, на светофоре.

Вредный поток — поток углекислого (выхлопного) газа, выбрасываемого в атмосферу, загрязняя окружающую среду.

Достаточный поток — поток бензина, обеспечивающий нормальную работу автомобиля.

Избыточный поток — поток бензина, избыточно поступающий в двигатель, приводящий к его перерасходу.

Недостаточный поток — поток бензина, не обеспечивающий нормальную работу автомобиля.

Любая система и функция имеют определенную иерархию.

3.1.6. Иерархия

Опишем иерархию системы:

— собственно, система;

— ее подсистемы;

надсистема;

внешняя среда.

Подсистема — составные части системы.

Надсистема — это объект, куда входит система в качестве подсистемы.

Иерархия может иметь более высокие ранги, например, наднадсистема и более низкие ранги, например, подподсистема.

Наднадсистема — это объект, куда входит надсистема, а подподсистема — это элементы, из которых состоит подсистема. Количество рангов может быть достаточно большое.

Пример 3.25. Компьютер

Системаперсональный компьютер.

Подсистемы: системный блок и устройства ввода — вывода (например, клавиатура, мышь, монитор, принтер, сканер, камера и т. п.).

Подподсистемы системного блокаэто процессор, материнская плата, видеокарта, оперативная память, жесткий диск, дисковод, звуковая карта, сетевая карта, блок питания и т. д.

Надсистема — компьютерные сети и т. д.

Наднадсистема это всемирная паутина, Интернет.

Внешняя среда — это среда, в которой находится компьютер, например, помещение, воздух и т. д.

Пример 3.26. Телефон

Система — телефон.

Подсистемы: микрофон и наушник, клавиатура, дисплей, память и т. п.

Подподсистемы — это элементы, из которых состоят микрофон и наушник, клавиатура, дисплей, память и т. д.

Надсистема — АТС, телефонные сети и т. д.

Наднадсистема АТСэто региональная и мировая телефонная сеть.

Внешняя среда — чаще всего — помещение и воздух.

Пример 3.27. Автомобиль

Система — автомобиль.

Подсистемы: колеса, двигатель, бензобак, система управления и т. п.

Подподсистемы двигателяэто поршень и цилиндр, шатун, свеча, клапаны, коленчатый вал, картер и т. д.

Надсистема — дорожное движение, к которой относятся: дороги, автозаправочные станции, автостоянки, система управления движением, гаражи, ремонтные службы, заводы изготовители и т. д.

Наднадсистема — это региональная и мировая сеть дорожного движения.

Внешняя среда — открытое пространство и атмосферные явления.

Функции также, как и системы, имеют иерархическую структуру. Функция более высокого ранга, как правило, более общая функция. Рассмотрим иерархию функций по степени важности:

— функция высшего (нулевого) рангаглавная функция, ее еще называют главной полезной функцией;

— функция первого рангаосновная функция;

— функция второго рангавспомогательная функция.

Можно рассматривать и функции 3-го и ниже рангов.

Иерархия функций показана на графе (рис. 3.2).

Рис. 3.2. Иерархия функций

Главная функция — это функция высшего (нулевого) ранга, указывающая главное действие — предназначение системы. Она должна выполнять главную цель, обеспечивая главную потребность в системе.

Основные функции — это функции первого ранга, функции основных подсистем.

Основные функции обеспечивают работоспособность главной функции, а, следовательно, и всей системы в целом.

Вспомогательные функции — это функции второго ранга, функции подподсистем. Вспомогательные функции обеспечивают работоспособность основных функций. Функции низших (n) рангов, прежде всего, должны обеспечивать работоспособность функций высших (n-1) рангов.

Функции, обеспечивающие работоспособность, будем называть необходимыми функциями. Функциональная работоспособность системы определяется набором необходимых функций всех рангов, который должен быть необходимым и достаточным, и в то же время обеспечивать функциональную полноту.

Пример 3.28. Компьютер

Главная функция — обработка информации (компьютер обрабатывает информацию).

Основные функции: системного блока — прием, обработка, хранение и вывод цифровых (электрических) сигналов, клавиатуры — ввод цифровой и буквенной информации, монитора — вывод информации на экран и т. д.

Вспомогательная функция части системного блока, блока питания, — обеспечение электрической энергией.

Пример 3.29. Телефон

Главная функция — передача звукового сигнала, например, речи.

Основные функции: микрофона — преобразование звукового сигнала в электрический, наушника — преобразование электрического сигнала в звуковой, клавиатуры — вводить цифровую и буквенную информацию и т. д.

Вспомогательная функция кнопки клавиатуры — ввод конкретного знака.

Пример 3.30. Автомобиль

Главная функция — перевозка (перемещение) людей.

Основные функции: бензобака — хранение (удержание) бензина, двигателя — преобразование бензина в поступательное движение, трансмиссии — преобразование поступательного во вращательное движение и т. д. Вспомогательная функция частей двигателя: поршня и цилиндра — сжатие бензина (создание давления).

Итак, мы рассмотрели основные определения системного подхода: система, функция, иерархия и присущие им понятия: целостность, свойство, отношение, процесс. Кроме того, были введены понятия: антропогенная и техническая системы.

3.2. Системность

3.2.1. Общие понятия

Понятие системности вытекает из системного подхода.

Системность — это свойство, заключающееся в согласовании всех взаимодействующих объектов, включая окружающую среду. Такое взаимодействие должно быть полностью сбалансировано.

Объект будет выполнен системным тогда и только тогда, когда он отвечает своему предназначению, жизнеспособен и отрицательно не влияет на расположенные рядом объекты и окружающую среду. Таким образом, чтобы объект был выполненным системно, он должен отвечать определенным требованиям.

Системные требования

1. Система должна отвечать своему предназначению.

2. Система должна быть жизнеспособной.

3. Система не должна отрицательно влиять на расположенные рядом объекты и окружающую среду.

4. При построении системы необходимо учитывать закономерности ее развития.

Системные требования представляют собой составляющие закона увеличения степени системности (рис. 3.3).

Рис. 3.3. Структура системности

Предназначение системы описывается главной функцией системы, выполняя главную цель системы, удовлетворяя определенную потребность.

Жизнеспособность технической системы определяется ее работоспособностью и конкурентоспособностью.

Система будут жизнеспособна, если она работоспособна и конкурентоспособна.

Работоспособность — это способность выполнять заданную функцию с параметрами, установленными техническими требованиями, в течение расчетного срока службы.

Другими словами работоспособность — это качественное функционирование системы, т. е. качественное выполнение главной функции системы.

К параметрам работоспособности помимо качественного функционирования системы (в том числе надежности и долговечности) можно также отнести эргономические параметры (характеризуют соответствие товара свойствам человеческого организма).

Работоспособность определяется наличием необходимых элементов с требуемым качеством, наличием и качеством необходимых связей между элементами, организацией необходимых потоков с требуемым качеством.

Конкурентоспособность товара — способность продукции быть привлекательной по сравнению с другими изделиями аналогичного вида и назначения, благодаря лучшему соответствию своих качественных и стоимостных характеристик к требованиям данного рынка и потребительским оценкам.

Конкурентоспособность конкретной системы определяется по сравнению с конкурирующей системой. Конкуренция зависит от:

— количества и качества выполняемых функций;

— стоимости данной системы;

— своевременности ее появления на рынке.

Помимо технических функций следует учитывать также эстетические и психологические. Один из основных эстетических параметров — это дизайн продукта и упаковки, включая и цветовую гамму. К психологическим параметрам следует отнести престижность, привлекательность, доступность и т. п.

Теперь можно представить более детальную схему структуры системности (рис. 3.4), которая является структурой закона увеличения степени системности.

Система работоспособна, когда она выполняет главную функцию системы. Работоспособная система отвечает ее предназначению и имеет определенную структуру.

Рис. 3.4. Структура закона повышения степени системности

Структура системы должна выполнять главную, все основные и вспомогательные функции, представляя собой совокупность взаимосвязанных элементов и связей.

Работоспособность зависит не только от структуры системы, но и от свободного прохода необходимых внутренних и внешних потоков.

3.2.2. Отсутствие системности

Пример 3.31. Телефон

Электромагнитное излучение, возникающее при разговоре по мобильному телефону вредно воздействует на окружающую аппаратуру, поэтому в самолетах и в больницах не разрешается разговаривать по мобильному телефону.

Антенны ретрансляторов мобильной связи вредно воздействуют на окружающих.

Пример 3.32. Автомобиль

Машины выбрасывают в атмосферу выхлопные газы, загрязняя окружающую среду.

Дорога вредно воздействует на автопокрышки, истирая их.

Атмосфера вредно действует на кузов автомобиля — появляется коррозия.

3.2.3. Эволюционное развитие

Системность так же учитывает и закономерности исторического развития исследуемого объекта — эволюционное развитие. Это последнее требование системности. Оно учитывается при прогнозировании развития объекта исследования путем учета выявленных тенденций исторического и логического развития данного объекта, а также учета общих законов развития систем. В результате получают общую тенденцию развития исследуемого объекта и концептуальное представление его следующих поколений.

3.3. Системный оператор

Г. С. Альтшуллер разработал «Системный оператор».

Его структура представлена на рис. 3.5.

Рис. 3.5. Системный оператор

Человек с рутинным мышлением рассматривает только саму систему (рис. 3.6). Более углубленный подход — выявить и исследовать части, из которых состоит система — подсистемы. Опытные люди выявляют, куда входит система — определяют надсистему и окружающую среду. Это иерархическая структура.

Рис. 3.6. Системные уровни

Пример 3.33. Дерево

В качестве системы мы рассмотрим дерево, то его подсистемы: ствол, крона и корни. В свою очередь подсистемы могут иметь свои составляющие части — подподсистемы, например, крона имеет ветви. У ветвей имеются свои подсистемы: листья, плоды. У листьев имеются подсистемы: черешок, прожилки, ткани листа. Надсистемой дерева является лес.

В системном мышлении, прежде всего, мы должны выявлять все структурные составляющие (систему, надсистему и подсистемы), много уровней подсистем и надсистем. Необычайно важно знать соседние системы и окружающую среду. Таким образом, системное мышление должно рассматривать все иерархические системные уровни.

Но только знание этих уровней недостаточно. Необходимо учитывать влияние подсистем на систему, системы на надсистему и окружающую среду, и обратное воздействие надсистемы и окружающей среды на систему и подсистемы. Без учета этих влияний мы не только сделаем плохо работающую систему или вообще не работоспособную, но можем оказать отрицательное воздействие на подсистемы, соседние системы, надсистему или окружающую среду.

Покажем взаимовлияние подсистем на систему, системы на надсистему и окружающую среду на примере дерева.

Пример 3.34. Дерево (продолжение)

Вид дерева и его подсистем существенным образом зависит от окружающей среды. Так на севере и высокогорных районах растут, например, карликовые деревья; в пустыне — растения способные запасать влагу (суккуленты), например, кактусы, запасающие влагу в стеблях, алоэ в сочных листьях.

От условий внешней среды зависят и подсистемы растений. Суккуленты имеют мясисто-сочные стебли, листья, или корневища, луковицы, клубни, способные запасать и долгое время бережно использовать запасенную воду. Кожица стеблей и листьев суккулентов покрыта эластичной лакоподобной пленкой — кутикулой, хорошо отражающей солнечные лучи. Кактус собирает влагу и из воздуха, путем ее конденсации на волосках и колючках (ареолах), общая площадь, которых получается очень большой.

В свою очередь растения влияют и на окружающую среду, выделяя или поглощая из атмосферы кислород или углекислый газ в различное время суток.

Пример 3.35. Морская игуана

Морская игуана обитает исключительно на Галапагосских островах. Она питается морскими водорослями и имеет уникальную среди современных ящериц способность проводить под водой около часа. Игуаны научились задерживать дыхание на этот срок, замедлять под водой сердечный ритм и пускать отток крови только к жизненно важным органам. Это произошло в результате эволюции изменением способа питания — пища добывается в воде (морские водоросли), а не на суше. Это пример приспособления к внешней среде.

У морских игуан на суше и воде есть маленькие помощники — крабы и рыбы абудельдуф. Это чистильщики, питающиеся паразитами, доставляющими морским ящерицам немало проблем.

Это пример самоорганизующейся системы.

Третья составляющая системного оператора — это учет динамики развития системы, ее подсистем и надсистем. Необходимо рассмотреть историческое развитие системы, ее подсистем и надсистемы. Эту составляющую мы будем называть эволюционным или генетическим развитием. Для этого выявляют, какие системы, подсистемы и надсистема были в прошлом, и прогнозируют их развитие на будущее.

Последней составляющей системного оператора — выявление анти-систем на всех уровнях и их использование с учетом динамики развития.

Анти-система — это система, которая осуществляет противоположную, по сравнению с исследуемой, функцию. Такое рассмотрение позволяет расширить представление о системе.

Таким образом, системный оператор имеет следующие составляющие:

1. Структура системы и ее иерархические уровни (система, подсистемы, надсистема и окружающая среда);

2. Влияние и взаимовлияние структурных единиц;

3. Динамика развития систем на всех уровнях — эволюционное развитие;

4. Учет и использование анти-систем, анти-функций и анти-действий.

Приведем примеры использования системного оператора.

Пример 3.36. Дерево (продолжение)

Система — дерево. Подсистемы дерева мы рассматривали в примере 3.34. В этом примере выберем плод, например, фрукт. Надсистема — лес. Это мы рассмотрели иерархическую линию. Прошлое дерева — это семя. Прошлое плода — цветок и его ДНК. Прошлое леса — земля.

Рассмотрим будущее. Одно из будущих дерева — это древесина. Одно из будущих фрукта (плода) — может быть что-то из плода, например, пирог, но чтобы согласовать с древесиной лучше взять изделие из древесины, например, деревянное блюдо, на котором лежат плоды.. Одно из будущих леса — уголь (рис. 3.7).

Пример 3.37. Машина (автомобиль)

Система — машина (автомобиль). Надсистемой может быть: автострада, система дорожного движения, включающая систему управления дорожным движением (разметка на дороге, дорожные знаки, светофоры, дорожная полиция

и т. д.), автозаправочные станции, ремонтные мастерские, заводы изготовляющие машины и т. д.

Прошлое машины — это карета. Прошлое двигателя — лошадь. Прошлое автострады — поселочная дорога. Прошлое управления дорожным движением — его отсутствие. Каждый ездил как хотел и где хотел. Прошлое автозаправочных станций — почтовые станции, где менялись экипажи с лошадьми, где лошади отдыхали и их кормили овсом. Ремонтные мастерские в прошлом представляли собой кузнечную мастерскую, а заводы по изготовлению машин — каретные мастерские.

Каждый может себе представить свое будущее. Прежде всего будущее машины зависит от того, из каких подсистем она будет состоять и в какую надсистему она будет входить. Например, уже сегодня разработаны машины с электрическими двигателями, имеются двигатели, работающие на водороде и даже сжатом воздухе. Это все приведет к изменению надсистемы. В будущем будет отсутствовать дорожная полиция — все будет автоматизировано. Автомобили будут «общаться» друг с другом, не допуская дорожных происшествий. Дороги могут походить под землей или над землей, не занимая дорогого места на земле.

Рассмотрим АНТИ составляющую.

Функция машины — перемещать (двигать) пассажира. Анти-функция — сдерживать (оставлять на месте). В качестве такой системы может быть тюрьма, домашний арест.

У подсистемы двигателя функция — перемещение поршня. Анти-функция — стопорение (фиксирование). Этой системой может служит любой зажим, например, тиски; рыболовные снасти, например, невод; сачок и т. д.

Если в качестве подсистемы взять «газ», у которого функция увеличить обороты двигателя (ускорение движения), то анти-функцию — уменьшить обороты (замедление движения) — выполняет тормоз.

У подсистемы колеса две функции: перемещение автомобиля и его поддержание на определенном расстоянии от дороги. Анти-функция перемещения — фиксация. Эту функцию осуществляет тоже колесо в режиме тормоза. Анти-функция поддержания — это притягивание или отталкивание. Притягивание к дороге осуществляет антикрыло. В качестве отталкивания может быть воздушная подушка или воздушный шар (дирижабль и т. п.).

Надсистема автострада имеет функции опоры и указания направления движения. Анти-функция опоры — отталкивание (см. выше). Анти-функция указание направления движения — отсутствие указания направления. У самолетов, ракет, судов, подводных лодок и торпед нет указания направления движения в виде дороги. Указание осуществляется виртуально с помощью системы управления.

Надсистема управление дорожным движением имеет одноименную функцию. Анти-функция — отсутствие управление дорожным движением. Это система, в которой отсутствуют все элементы (см выше). Должна быть самоуправляемая система. Каждая машина связывается с другой машиной. Все вместе они образуют самоорганизующуюся систему (наподобие муравьев или пчел).

Остальные анти-элементы рассмотрите самостоятельно (рис. 3.8).

Рис. 3.8. Системный оператор для системы машина

3.4. Учет влияний

Системный подход подразумевает учет любых изменений и их влияний на систему. Изменения могут происходить во времени и по условию.

Пример 3.38. Изменения во времени

Типичные изменения во времени — это смена дня и ночи и времен года. Такие изменения учитываются, например, включением и выключением света, обогревом и охлаждением помещений и т. д.

Пример 3.39. Изменения по условию

Типовым изменением по условию в природе это фазовые переходы, например, при температуре 0оС при атмосферном давлении лед превращается в воду. На большой глубине высокое давление. В космосе — невесомость и т. д.

Каждый из нас сталкивается с изменениями по условию в дорожном движении. При красном свете светофора — нет движения, а при зеленом — имеется.

Каждое изменение должно быть учтено при создании новых систем.

Учет всех изменений одна из важных составляющих системного подхода.

Системное мышление должно применяться к любому объекту, к любому явлению и к любому процессу.

3.5. Системный подход при проектировании

Системный подход к проектированию требует обязательное выявления целей, потребностей, функций, принципа действий и систем.

Проектирование начинается с определения целей.

3.5.1. Системный синтез

Синтез ТС должен осуществляться в следующей последовательности: выявление потребностей, функций, принципа действия и систем (рис. 3.9).

Рис. 3.9. Последовательность этапов системного синтеза

Первоначально выявляют потребность, которую необходимо удовлетворить. На следующем этапе определяют все альтернативные функции, которые могут удовлетворить данную потребность. Далее выбирают одну из них, наилучшим образом, удовлетворяющим данную потребность.

Для выбранной функции подбираются все возможные принципы действия системы и из них выбирается наилучший.

На заключительном этапе определяются все возможные виды систем, способные осуществить выбранный принцип действия и отбирается наилучшая.

Пример 3.40. Конференция

Представим ситуацию проведения конференции в определенном месте.

Цель — провести конференцию.

Потребность участника конференции — быть в данном месте в данное время.

Функция — перемещение участника с точки А в точку Б.

Опишем только принципы действия перемещения по земле.

Принцип действия: качение, принцип гусеницы, змеи, воздушная подушка и т. д.

Система: колесо, гусеница, воздушная подушка и т. д.

Корректировка может проводиться уже на уровне потребностей.

Если возможно проводить виртуальную конференцию, то участнику не нужно физически присутствовать на конференции, поэтому меняются функции и последующие этапы.

Идеальный системный синтез — это создание самоорганизующейся системы, приводящую к ее балансу. Такая система приспосабливается к изменениям и противостоит разбалансирующим изменениям.

Все природные системы самоорганизующиеся. Это относится как к растительному, так и к животному миру. Изменения во внешней среде влияют на них, и они приспосабливаются к этим изменениям. В свою очередь изменения, например, в растительном мире влияют и изменяют окружающую среду. Так эвкалипты, посажанные в болотистых местах, осушают их и меняют окружающую среду.

3.5.2. Системный анализ

Анализ ТС осуществляется в обратной последовательности: анализ существующей системы, ее составных частей и процессов, анализ принципа действия системы, выявление функций системы и потребности, которую удовлетворяет данная система (рис. 3.10).

Анализ ТС осуществляется в обратной последовательности: анализ существующей системы, ее составных частей и процессов, анализ принципа действия системы, выявление функций системы и потребности, которую удовлетворяет данная система (рис. 3.10).

Рис. 3.10. Последовательность этапов системного анализа

В дальнейшем могут быть выбраны или разработаны альтернативные системы, использующие тот же принцип действия, или альтернативные системы, выполняющие туже функцию или альтернативные системы, удовлетворяющие данную потребность.

Пример 3.41. Стиральная машина

Система — стиральная машина.

Принцип действия — вращение белья с мыльной водой.

Функция — сталкивание белья с водой.

Потребность — соблюдение гигиенической чистоты.

Можно для данной функции найти альтернативный принцип действия. Например, использование ультразвука.

Для данной потребности можно найти другой способ поддержания гигиенической чистоты, например, создание незагрязняющейся одежды. Такие попытки делались в прошлом и настоящем.

3.5.3. Анализ выявления недостатков

Анализ системы для определения ее недостатков проводится в следующей последовательности (рис. 3.11):

1. Компонентный анализ.

2. Структурный анализ.

3. Анализ функций.

4. Диагностический анализ.

Рис. 3.11. Последовательность этапов системного анализа для выявления недостатков

Цель компонентного анализа — построить компонентную модель. Компонентом мы будем называть любой элемент системы на всех иерархических уровнях: подсистемы, системы, надсистема и окружающая среда. На этом этапе выявляются все компоненты и записываются в таблицу.

Цель структурного анализа — построить структуру системы. Определяют все связи между компонентами. Для этого строят матрицу связей (табл 3.1).

Таблица 3.1. Матрица связей

Примечание. Знаком «+» обозначено наличие связи.

Используя данные таблицы, строят графическую модель связей между компонентами.

Цель этапа анализа функций — построить функциональную модель. На этом этапе определяют направление и характер действия, т. е. функции.

Таблица функций представлена в табл. 3.2.

Таблица 3.2. Функции элементов Примечание. У одного элемента может быть несколько функций.

Примечание. У одного элемента может быть несколько функций.

По таблице функций строят графическую функциональную модель.

Цель диагностического анализа — построить диагностическую модель, т. е. оценить функции и потоки.

Рассмотрим данную методику на примере комнатного кондиционера.

Пример 3.42. Компонентный анализ

Рассмотрим кондиционер сплит-системы настенного типа, т. е. кондиционер, состоящий из двух блоков: наружного (рис. 3.12) и внутреннего (рис. 3.13).

Рис. 3.12. Наружный блок кондиционера10

Где

1 — компрессор;

2 — четырехходовой клапан;

3 — плата управления;

4 — вентилятор;

5 — конденсатор;

6 — фильтр фреоновой системы;

7 — штуцерные соединения;

8 — защитная быстросъемная крышка.

Рис. 3.13. Внутренний блок кондиционера

Где

1 — передняя панель;

2 — фильтр грубой очистки;

3 — испаритель;

4 — горизонтальные жалюзи;

5 — индикаторная панель;

6 — фильтр тонкой очистки;

7 — терморегулируемый вентилятор (ТРВ);

8 — вертикальные жалюзи.

Пример 3.43. Структурный анализ

Помимо структурного анализа покажем функциональность кондиционера и основных его частей.

Функционально-структурная схема кондиционера показана на рис. 3.14.

Рис. 3.14. Функционально-структурной схема кондиционера

Принцип работы кондиционера показан на рис. 3.15.

Рис. 3.15. Принцип работы кондиционера в режиме охлаждения11

Устройство кондиционера базируется на явлениях испарении и конденсации. При испарении, влага забирает тепло, а при конденсации, отдает.

Во внутреннем блоке происходит кипение и испарение хладагента (фреон — газ, кипящий при комнатной температуре и атмосферном давлении). Фреон забирает тепло у теплообменника внутреннего блока, который еще называется испаритель, где весь фреон полностью превращается в газ. Поток воздуха, создаваемый вентилятором, проходит через испаритель, отдает свое тепло и выходит из блока охлажденным.

Во внешнем блоке, находящимся на улице, происходит обратный процесс — конденсация. Под давлением, создаваемым компрессором, хладагент конденсируется в теплообменнике внешнего блока, который называется конденсатор, где весь фреон полностью превращается в жидкость. Поток воздуха, создаваемый вентилятором, проходит через конденсатор, отдает свое тепло и выходит из блока подогретым.

Компрессор представляет собой насос высокого давления для газа. Он создает такое давление, чтобы при нормальных температурах весь хладагент успевал сконденсироваться во внешнем блоке. Далее хладагент проходит через дросселирующее устройство (терморегулируемый вентилятор — ТРВ), выравнивая давление.

Четырехходовой клапан переключает кондиционер из режима охлаждения в режим обогрева. Он изменяет (инвертирует) направление движения фреона. При этом внутренний и наружный блок как бы меняются местами: внутренний блок работает на обогрев, а наружный — на охлаждение.

Анализ будет проводиться упрощенный, только по основным частям кондиционера.

Разберем устройство каждой части. Параллельно будем указывать функции, которые выполняет каждая из частей кондиционера.

Наружный блок:

1. Компрессорповышает давление хладагента (фреона), тем самым, нагревая его, и перемещает фреон по холодильному контуру с помощью повышенного давления. Хладагент в компрессор поступает из испарителя.

2. Конденсатор — это радиатор. Он охлаждает и конденсирует фреон. Продуваемый через конденсатор воздух, соответственно, нагревается.

3. Вентиляторсоздает поток воздуха на конденсатор.

4. Плата управленияуправляет внешним блоком и принимает команды от пульта управления.

5. Четырехходовой клапанизменяет (инвертирует) направление движения фреона. При этом внутренний и наружный блок как бы меняются местами: внутренний блок работает на обогрев, а наружный — на охлаждение.

6. Фильтр фреоновой системызащищает систему от попадания мелких частиц, которые могут образоваться при монтаже кондиционера. Устанавливается перед входом компрессора.

7. Штуцерные соединениясоединяют (удерживают) медные трубки, соединяющие наружный и внутренний блоки.

8. Защитная быстросъемная крышказащищает от внешнего воздействия штуцерные соединения и клеммник, используемый для подключения электрических кабелей.

Примечание. При дальнейшем анализе не будут рассмотрены: ТРВ, четырехходовой клапан, фильтр фрионовой системы, штуцерные соединения, клеммник, защитную быстросъемную крышку, устройство платы управления и все датчики.

Внутренний блок:

1. Испаритель — это радиатор. Он нагревает фреон. Фреон испаряется. Продуваемый через радиатор воздух охлаждается.

2. Вентилятор — создает поток воздуха на испаритель. Таким образом, вентилятор внутреннего блока создает две полезные функции:

— помогает нагревать испаритель, а, следовательно, и фреон. Фреон испаряется и охлаждает поток воздуха;

— переносит поток холодного воздуха.

3. Плата управления (на рисунке не показана) — управляет внутренним блоком и принимает команды от пульта управления. На этой плате находится блок электроники с центральным микропроцессором.

4. Терморегулирующий вентиль — ТРВ (рис. 3.15) — понижает давление хладагента перед испарителем без изменения его агрегатного состояния (фреон должен остаться жидким). Давление снижают для уменьшения температуры кипения фреона в испарителе. Изменением величины давления регулируют температуру кипения (испарения), а, следовательно, и температуру потока воздуха.

5. Поддон для конденсата (на рисунке не показан) — сбора конденсата (воды, образующейся на поверхности холодного испарителя). Он расположен под испарителем. Из поддона вода выводится наружу через дренажный шланг.

6. Передняя панель — пропускает воздух внутрь блока. Представляет собой пластиковую решетку, через которую внутрь блока поступает воздух.

7. Фильтр грубой очистки — препятствует прохождению крупной пыли, шерсти животных и т. п. внутрь блока.

8. Горизонтальные жалюзи — регулируют направление воздушного потока по вертикали. Эти жалюзи имеют электропривод, и их положение может регулироваться с пульта дистанционного управления. Кроме этого, жалюзи могут автоматически совершать колебательные движения для равномерного распределения воздушного потока по помещению.

9. Привод горизонтальных жалюзи (на рисунке не показан) — перемещает жалюзи.

10. Индикаторная панель — показывает режим работы кондиционера и сигнализирует о возможных неисправностях. На передней панели кондиционера установлены индикаторы (светодиоды).

11. Фильтр тонкой очистки — препятствует прохождению мелкой пыли. Фильтры бывают различных типов: угольный (удаляет неприятные запахи), электростатический (задерживает мелкую пыль) и т. п.

12. Вертикальные жалюзи — регулируют направление воздушного потока по горизонтали. Они служат для регулировки направления воздушного потока по горизонтали. Регулировка вручную.

13. Штуцерные соединения (на рисунке не показаны) — соединяют (удерживают) медные трубки, соединяющие внутренний и наружный блоки.

14. Пульт дистанционного управления (на рисунке не показан) — передает команды управления на плату управления.

15. ИК-приемник (на рисунке не показан) принимает сигналы от пульта дистанционного управления и передает их на микросхему.

16. Термодатчик (на рисунке не показан) измеряет температуру в испарителе. У некоторых кондиционеров, имеющих режим создания заданной температуры в точке, где находится пульт дистанционного управления. В пульте управления таких кондиционеров имеется дополнительный термодатчик.

17. Управляющая микросхема (на рисунке не показана) — обрабатывает входные сигналы и выдает сигналы управления.

Примечание. При дальнейшем анализе не будут рассмотрены: ТРВ, четырехходовой клапан, фильтры грубой и тонкой очистки, горизонтальные и вертикальные жалюзи, привод горизонтальных жалюзи, штуцерные соединения, пульт дистанционного управления, ИК-приемник, управляющая микросхема и индикаторная панель. Поддон для конденсата будем условно считать внутренним корпусом.

Надсистемные элементы, связанные с внешним блоком:

18. Наружная стена дома — удерживает наружный корпус.

19. Окружающая среда — взаимодействует с наружным корпусом. Будем условно считать — воздух снаружи.

Кроме того, имеются еще общие элементы для этих блоков и дополнительные элементы:

1. Трубки, соединяющие две части кондиционера. По ним движется хладагент.

2. Хладагентизменяет температуру воздуха (испарение, конденсация).

3. Электрический силовой кабель, соединяющий блоки — передает напряжение питания на компрессор и вентилятор.

4. Кабель управления, соединяющий блоки — передает сигналы управления.

5. Электрический силовой кабель, который включается в электрическую сеть — подводит напряжение питания к кондиционеру.

6. Дренажный шланг — отводит конденсат.

Пример 3.44. Выявление связей в кондиционере

В этом примере определим связи только для минимально необходимых частей кондиционера, надсистемы и окружающей среды (табл. 3.3).

Таблица 3.3. Взаимодействие элементов кондиционера

Где

НБ — наружный блок;

ВБ — внутренний блок;

ЭСК — электрический силовой кабель;

0 — отсутствие связи;

+ — полезная связь;

— — вредная связь.

Пример 3.45. Определение функций элементов системы

Опишем только наиболее существенные полезные и вредные функции основных элементов (табл. 3.4).

Таблица 3.4. Функции элементов кондиционера

На графической функциональной модели (рис. 3.16) не показаны функции наружного и внутреннего корпусов удерживать компрессор, конденсатор, испаритель и вентиляторы, а также функции наружной и внутренней стен удерживать корпуса. Эти функции не существенны для данной задачи.

Рис. 3.16. Функциональная схема

Опишем наиболее существенные недостатки кондиционера.

1. Наружный блок создает шум.

2. Внутренний блок тоже создает шум, но меньший по уровню.

3. Перемещение воздуха приводит к простудным заболеваниям.

4. Кондиционер создает одну и туже температуру в комнате. Часто бывает, что для разных людей необходима разная температура.

3.6. Выводы

Системное мышление опирается на понятия система (п. 3.1.2) и системность (п. 3.2).

Оно должно учитывать:

1. Иерархию систем.

2. Эволюционное развитие систем. Выявление тенденций развития и использование законов развития систем, прогнозирование будущих событий, будущих систем.

3. Взаимовлияния системы на подсистемы, надсистему и окружающую систему, обратное влияние надсистемы и окружающей среды на систему.

4. Учет изменений во времени и по условию и их влияние.

5. Выявление целей, потребностей, функций, принципов действия системы, структуру и функциональность системы.

6. Особое значение в системном подходе уделяют взаимовлияниям:

6.1. При системном анализе выявляют все взаимосвязи и взаимовлияния, приводящие к изменениям в системе, подсистемах, надсистеме и окружающей среде. Дается оценка этим влияниям и изменениям. Определяют закономерности этих изменений.

6.2. При системном синтезе учитывают все влияния, изменения и закономерности изменений при создании новых систем. Идеальный системный синтез — создание самоорганизующейся системы, приводящую к ее балансу. Это система приспосабливается к изменениям и противостоит разбалансирующим изменениям.

7. При анализе недостатков системы проводят ее анализ в последовательности:

7.1. Компонентный анализ.

7.2. Структурный анализ.

7.3. Функциональный анализ.

7.4. Диагностический анализ.

3.7. Самостоятельная работа

3.7.1. Контрольные вопросы

1. Дайте определение системного мышления и системного подхода.

2. Дайте определение системы.

3. Дайте определение системного свойства?

4. Приведите понятия, сопутствующее понятию система.

5. Дайте определение антропогенной системы.

6. Дайте определение технической системы.

7. Приведите приметы технических систем.

8. Опишите иерархию систем. Назовите иерархические уровни системы.

9. Дайте определение функции. Приведите примеры функций технических систем.

10. Опишите виды функций у технической системы.

11. Опишите иерархию функций.

12. Опишите классификацию оценки функций.

13. Что такое полезная функция?

14. Что такое бесполезная функция?

15. Что такое вредная функция?

16. Что такое достаточная функция?

17. Что такое недостаточная функция?

18. Что такое избыточная функция?

19. Дайте определение процесса.

20. Дайте определение потока.

21. Какие виды потоков могут быть?

22. Опишите классификацию оценки потока.

23. Дайте определение системности.

24. Опишите составляющие системности.

25. Опишите системные требования.

26. Опишите составляющие системного оператора.

27. Опишите виды изменений.

28. Опишите этапы и процесс системного синтеза.

29. Опишите этапы и процесс системного анализа.

30. Опишите этапы и процесс анализа выявления недостатков.

3.7.2. Темы докладов и рефератов

1. История появления термина система. Обзор и анализ имеющихся определений системы.

2. Анализ понятия системное мышление и системный подход у различных авторов.

3. Анализ не системного подхода к природе, антропогенным системам и в частности, к технике в истории развития человечества.

3.7.3. Выполните задания

1. Приведите примеры антропогенных и технических систем.

2. Приведите примеры не системного подхода.

3. Используйте системный оператор для лампы.

4. Используйте системный оператор для компьютера.

5. Выберете любую систему и/или процесс и примените к ней системный оператор.

6. Покажите учет влияний в природе.

7. Покажите учет влияний в технике.

8. Осуществите системный синтез для автомобиля.

9. Выберете систему и проведите для нее системный синтез.

10. Осуществите системный анализ для кофеварки.

11. Проведите анализ выявления недостатков для утюга, выполнив компонентный, структурный, функциональный и диагностический анализы.

12. Выберете систему и проведите для нее анализ недостатков.

Оглавление

* * *

Приведённый ознакомительный фрагмент книги Основы ТРИЗ. Теория решения изобретательских задач. Издание 2-е, исправленное и дополненное предоставлен нашим книжным партнёром — компанией ЛитРес.

Купить и скачать полную версию книги в форматах FB2, ePub, MOBI, TXT, HTML, RTF и других

Примечания

10

Рис. 3.12—3.14 с сайта www.rfclimat.ru с разрешения руководителя компании Компания РФК Климат Михаила Каминского

11

http://pro-kondicioner.ru/stati/princip-raboty-kondicionera.html

Смотрите также

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я