Понятия со словом «сколь»
Связанные понятия
Говорят, что возникло
математическое совпадение, если два выражения дают почти одинаковые значения, хотя теоретически это совпадение никак объяснить нельзя.
В теории вероятностей говорят, что событие почти достоверно или что оно произойдет почти наверняка, если это произойдет с вероятностью 1. Понятие является аналогом понятия «почти всюду» в теории меры. В то время, как во многих основных вероятностных экспериментах нет никакой разницы между «почти достоверно» и «достоверно», (то есть, событие произойдет совершенно точно), это различие важно в более сложных случаях, относящихся к случаям рассмотрения какой-либо бесконечности. Например, термин часто...
Подробнее: Почти достоверное событие
Множество больших тригонометрических сумм — понятие теории чисел — множество индексов, в которых преобразование Фурье характеристической функции заданного подмножества группы принимает достаточно большие значения.
Спор о струне, спор о колеблющейся струне, спор о звучащей струне — научная дискуссия, развернувшаяся в XVIII веке между крупнейшими учёными того времени вокруг изучения колебаний струны. В спор оказались вовлечены Д’Аламбер, Эйлер, Д. Бернулли, Лагранж. Дискуссия касалась определения понятия функции и оказала решающее влияние на множество разделов математики: теорию дифференциальных уравнений в частных производных, математический анализ и теорию функций вещественного переменного, теорию тригонометрических...
Закон необходимого разнообразия (англ. The Law of Requisite Variety) — кибернетический закон, сформулированный Уильямом Россом Эшби и формально доказанный в работе «Введение в кибернетику».
Закон больших чисел (ЗБЧ) в теории вероятностей — принцип, описывающий результат выполнения одного и того же эксперимента много раз. Согласно закону, среднее значение конечной выборки из фиксированного распределения близко к математическому ожиданию этого распределения.
Демпстера-Шафера теория — математическая теория очевидностей (свидетельств) (), основанная на функции доверия (belief functions) и функции правдоподобия (plausible reasoning), которые используются, чтобы скомбинировать отдельные части информации (свидетельства) для вычисления вероятности события. Теория была развита Артуром П. Демпстером и Гленном Шафером.
Совершенное множество — замкнутое множество, не имеющее изолированных точек, то есть совпадающее с множеством всех своих предельных точек.
Теоре́ма о движе́нии це́нтра масс (це́нтра ине́рции) системы — одна из общих теорем динамики, является следствием законов Ньютона. Утверждает, что ускорение центра масс механической системы не зависит от внутренних сил, действующих на тела системы, и связывает это ускорение с внешними силами, действующими на систему.
Теоре́ма об измене́нии коли́чества движе́ния (и́мпульса) систе́мы — одна из общих теорем динамики, является следствием законов Ньютона. Связывает количество движения с импульсом внешних сил, действующих на тела, составляющие систему. В качестве системы, о которой идёт речь в теореме, может выступать любая механическая система, состоящая из любых тел.
Алгоритм Гаусса — Ньютона используется для решения задач нелинейным методом наименьших квадратов. Алгоритм является модификацией метода Ньютона для нахождения минимума функции. В отличие от метода Ньютона, алгоритм Гаусса — Ньютона может быть использован только для минимизации суммы квадратов, но его преимущество в том, что метод не требует вычисления вторых производных, что может оказаться существенной трудностью.
Бесконечно малая — числовая функция или последовательность, которая стремится к нулю.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Уравнение ренормгруппы (уравнение Каллана — Симанчика) — дифференциальное уравнение для корреляционных функций (пропагаторов), показывающее их независимость от масштаба рассмотрения. Оно имеет место, например, при рассмотрении динамики системы вблизи критической точки.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.
Смешанные частные производные одной и той же функции, отличающиеся лишь порядком (очерёдностью) дифференцирования, равны между собой при условии их непрерывности. Такое свойство называется равенством смешанных производных.
Подробнее: Равенство смешанных производных
Коэффициент Байеса — это байесовская альтернатива проверке статистических гипотез. Байесовское сравнение моделей — это метод выбора моделей на основе коэффициентов Байеса. Обсуждаемые модели являются статистическими моделями. Целью коэффициента Байеса является количественное выражение поддержки модели по сравнению с другой моделью, независимо от того, верны модели или нет. Техническое определение понятия «поддержка» в контексте байесовского вывода дано ниже.
Метод неопределённых коэффициентов ― метод, используемый в математике для нахождения искомой функции в виде точной или приближённой линейной комбинации конечного или бесконечного набора базовых функций.
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
Интервал в теории относительности — аналог расстояния между двумя событиями в пространстве-времени, являющийся обобщением евклидового расстояния между двумя точками. Интервал лоренц-инвариантен, то есть не меняется при переходе от одной инерциальной системы отсчёта к другой, и, даже более, является инвариантом (скаляром) в специальной и общей теории относительности.
Выборка по значимости (англ. importance sampling, далее ВЗ) — один из методов уменьшения дисперсии случайной величины, который используется для улучшения сходимости процесса моделирования какой-либо величины методом Монте-Карло. Идея ВЗ основывается на том, что некоторые значения случайной величины в процессе моделирования имеют бо́льшую значимость (вероятность) для оцениваемой функции (параметра), чем другие. Если эти «более вероятные» значения будут появляться в процессе выбора случайной величины...
Усло́вное распределе́ние в теории вероятностей — это распределение случайной величины при условии, что другая случайная величина принимает определённое значение.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.
Нера́венство Ма́ркова в теории вероятностей даёт оценку вероятности, что случайная величина превзойдёт по модулю фиксированную положительную константу, в терминах её математического ожидания. Хотя получаемая оценка обычно груба, она позволяет получить определённое представление о распределении, когда последнее не известно явным образом.
Практичное число или панаритмичное число — это положительное целое число n, такое что все меньшие положительные целые числа могут быть представлены в виде суммы различных делителей числа n. Например, 12 является практичным числом, поскольку все числа от 1 до 11 можно представить в виде суммы делителей 1, 2, 3, 4 и 6 этого числа — кроме самих делителей, мы имеем 5 = 3 + 2, 7 = 6 + 1, 8 = 6 + 2, 9 = 6 + 3, 10 = 6 + 3 + 1 и 11 = 6 + 3 + 2.
Аксиома́тика Колмого́рова — общепринятая аксиоматика для математического описания теории вероятностей. Первоначальный вариант предложен Андреем Николаевичем Колмогоровым в 1929 году, окончательная версия — в 1933 году. Аксиоматика Колмогорова позволила придать теории вероятностей стиль, принятый в современной математике.
Категория называется полной в малом, если в ней любая малая диаграмма имеет предел. Двойственное понятие — кополная в малом категория, то есть та, в которой любая малая диаграмма имеет копредел. Аналогично определяется конечная полнота и вообще α-полнота для любого регулярного кардинала α. Из них всех наиболее употребимой является полнота в малом, поэтому категории, полные в малом, называют просто полными. Существование пределов вообще всех (не обязательно малых) диаграмм оказывается слишком сильным...
Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.
Точное нахождение первообразной (или интеграла) произвольных функций — процедура более сложная, чем «дифференцирование», то есть нахождение производной. Зачастую, выразить интеграл в элементарных функциях невозможно.
Подробнее: Методы интегрирования
Теорема об уголках — доказанный результат в области аддитивной комбинаторики, утверждающий присутствие некой упорядоченной (в арифметическом смысле) структуры, называемой уголком, в достаточно больших двумерных множествах любой фиксированной плотности.
Теорема Крамера об алгебраических кривых даёт необходимое и достаточное условия, при которых число точек на вещественной плоскости, принадлежащие алгебраической кривой, однозначно определяют кривую в невырожденных случаях. Это число равно...
Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.
Подробнее: Спектральный метод
Праймориал (англ. Primorial, иногда именуется также «примориал») — в теории чисел функция над рядом натуральных чисел, схожая с функцией факториала, с разницей в том, что праймориал является последовательным произведением простых чисел, меньших или равных данному, в то время как факториал является последовательным произведением всех натуральных чисел, меньших или равных данному.
Алгоритм Гельфонда — Шенкса (англ. Baby-step giant-step; также называемый алгоритмом больших и малых шагов) — в теории групп детерминированный алгоритм дискретного логарифмирования в мульпликативной группе кольца вычетов по модулю простого числа. Был предложен советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году.
Криптосистема Уильямса (Williams System) — система шифрования с открытым ключом, созданная Хью Коуи Уильямсом (Hugh Cowie Williams) в 1984 году.
Ве́кторная величина́ — физическая величина, являющаяся вектором (тензором ранга 1). Противопоставляется с одной стороны скалярным (тензорам ранга 0), с другой — тензорным величинам (строго говоря — тензорам ранга 2 и более). Также может противопоставляться тем или иным объектам совершенно другой математической природы.
Ве́кторная диагра́мма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов. Векторные диаграммы широко применяются в электротехнике, акустике, оптике, теории колебаний и так далее.
Алгоритм Левенберга — Марквардта — метод оптимизации, направленный на решение задач о наименьших квадратах. Является альтернативой методу Ньютона. Может рассматриваться как комбинация последнего с методом градиентного спуска или как метод доверительных областей. Алгоритм был сформулирован независимо Левенбергом (1944) и Марквардтом (1963).
Уравнение центра — в задаче двух тел угловое расстояние между истинным положением тела на эллиптической орбите и положением, которое занимало бы тело в случае равномерного движения по круговой орбите с тем же периодом обращения. Определяется как разность между истинной аномалией ν и средней аномалией M, обычно представляется в виде функции средней аномалии и эксцентриситета орбиты e.
Соизмери́мые величи́ны — величины, для которых соответственно существует общая мера. Общей мерой величин называют величину, которая целое число раз содержится в каждой из них. Если такой меры, которая укладывается целое число раз в каждую величину, не существует, то такие величины называют несоизмери́мыми. Примером несоизмеримых величин могут служить диагональ квадрата и его сторона.
При рассмотрении сложного движения (когда точка или тело движется в одной системе отсчёта, а эта система отсчёта в свою очередь движется относительно другой системы) возникает вопрос о связи скоростей в двух системах отсчёта.
Подробнее: Сложение скоростей
Задача разбиения множества чисел — это задача определения, можно ли данное мультимножество S положительных целых чисел разбить на два подмножества S1 и S2, таких, что сумма чисел из S1 равна сумме чисел из S2. Хотя задача разбиения чисел является NP-полной, существует решение псевдополиномиального времени методом динамического программирования существуют эвристические алгоритмы решения для многих конкрентных задач либо оптимально, либо приближённо. По этой причине задачу называют "простейшей NP-трудной...