Понятия со словом «скобочный»
Пра́вильная ско́бочная после́довательность (ПСП) — символьная последовательность, составленная в алфавите, состоящем из символов, сгруппированных в упорядоченные пары (типы скобок, графически обозначаемые «(» и «)», «», «/*» и «*/» и т. п.), удовлетворяющая определённым правилам, обеспечивающим последовательную вложенность подпоследовательностей, обрамлённых открытой и закрытой скобкой одного типа.
Связанные понятия
Биекция — это отображение, которое является одновременно и сюръективным, и инъективным. При биективном отображении каждому элементу одного множества соответствует ровно один элемент другого множества, при этом определено обратное отображение, которое обладает тем же свойством. Поэтому биективное отображение называют ещё взаимно однозначным отображением (соответствием), одно-однозначным отображением.
Синтаксическая диаграмма — это направленный граф с одним входным ребром и одним выходным ребром и помеченными вершинами. Синтаксическая диаграмма задаёт язык. Цепочка пометок при вершинах на любом пути от входного ребра к выходному — это цепочка языка, задаваемого синтаксической диаграммой. Поэтому можно считать, что синтаксическая диаграмма — это одна из форм порождающей грамматики автоматных языков. Синтаксические диаграммы и конечные автоматы имеют тесную связь: любой автоматный язык задаётся...
Диаграммы Юнга — наглядноe описание представлений симметрических и полных линейных групп и изучения их свойств.
Разбиение многоугольника — это множество примитивных элементов (например, квадратов), которые не накладываются и объединение которых равно многоугольнику. Задача о разбиении многоугольника — это задача поиска разбиения, которое в некотором смысле минимально, например, разбиение с наименьшим числом элементов или разбиение с наименьшей суммой длин сторон.
В математике (особенно в теории категорий), коммутативная диаграмма — изображаемая в наглядном виде структура наподобие графа, вершинами которой служат объекты определённой категории, а рёбрами — морфизмы. Коммутативность означает, что для любых выбранных начального и конечного объекта для соединяющих их ориентированных путей композиция соответствующих пути морфизмов не будет зависеть от выбора пути.
Подробнее: Коммутативная диаграмма
Однородная мозаика может существовать как на евклидовой плоскости, так и на гиперболической плоскости. Однородные мозаики связаны с конечными однородными многогранниками, которые можно считать однородными замощениями сферы.
Полурешётка (англ. semilattice, до 1960-х годов также использовался термин полуструктура) в общей алгебре — полугруппа, бинарная операция в которой коммутативна и идемпотентна.
Перечислительная комбинаторика (или исчисляющая комбинаторика) — раздел комбинаторики, который рассматривает задачи о перечислении, то есть подсчёте количества, или непосредственного построения и перебора, различных конфигураций (например, перестановок), образуемых элементами конечных множеств, на которые могут накладываться определённые ограничения, такие как: различимость или неразличимость элементов, возможность повторения одинаковых элементов и т. п.
В теории графов частичный куб — это подграф гиперкуба, сохраняющий расстояния (в терминах графов) — расстояние между любыми двумя вершинами подграфа, то же самое, что и в исходном графе. Эквивалентно, частичный куб — это граф, вершины которого можно пометить битовыми строками одинаковой длины, так что расстояние между двумя вершинами в графе равно расстоянию Хэмминга между этими двумя метками. Такая разметка называется разметкой Хэмминга и она представляет изометричное вложение частичного куба в...
В математике, логике и информатике, рекурсивно перечислимым языком называется тип формального языка, также известный как частично разрешимый или распознаваемый по Тьюрингу. В иерархии Хомского он известен как язык типа 0. Класс всех рекурсивно перечислимых языков называется RE.
Подробнее: Рекурсивно перечислимый язык
В статье суммируется информация о классах дискретных групп симметрии евклидовой плоскости. Группы симметрии, приведённые здесь, именуются по трём схемам именования: междурародная нотация, орбифолдная нотация и нотация Коксетера.
Подробнее: Список плоских групп симметрии
В теории графов декомпозиция на ветви неориентированного графа G — это иерархическая кластеризация рёбер графа G, представленная некорневым бинарным деревом T с рёбрами из G в качестве листьев. Удаление любого ребра из T делит рёбра графа G на два подграфа, а шириной декомпозиции считается максимальное число общих вершин в любом подграфе, полученным таким образом.
Симплициальное множество (в ранних источниках — полусимплициальный компле́кс) — теоретико-категорная конструкция, обобщающая понятие симплициального комплекса и в определённом смысле моделирующая понятие топологического пространства с «хорошими» свойствами: теория гомотопий для симплициальных множеств эквивалентна классической теории гомотопий для топологических пространств. За счёт того, что является чисто алгебраической конструкцией, обеспечивает практически полный параллелизм с геометрическими...
Булевы операции над многоугольниками — это набор булевых операций (AND, OR, NOT, XOR, ...) с одним или несколькими наборами многоугольников в компьютерной графике. Эти наборы операций широко используются в компьютерной графике, САПР и в проектировании электронных схем (физическое расположение элементов интегральных схем и программы проверки).
В теоретической информатике, точнее, в теории формальных языков, высота итерации — это мера структурной сложности регулярных выражений — высота итерации регулярного выражения равна максимальной глубине вложенности звёздочек, присутствующих в регулярном выражении.
Подробнее: Высота итерации языка
Группа Григорчука — первый пример конечнопорождённой группы промежуточного роста (то есть её рост быстрее полиномиального, но медленнее экспоненциального).
Парке́т или замощение — разбиение плоскости многоугольниками (или пространства многогранниками) без пробелов и перекрытий.
В теории категорий, классификатор подобъектов — специальный объект Ω категории; интуитивно, подобъекты X соответствуют морфизмам из X в Ω. Способ, которым он «классифицирует» объекты можно описать как присвоение некоторым элементам X значения «истина».
В теории графов древесная декомпозиция — это отображение графа в дерево, которое может быть использовано для определения древесной ширины графа и ускорения решения определённых вычислительных задач на графах.
Числовая последовательность (ранее в русскоязычной математической литературе встречался термин вариа́нта, принадлежащий Ш. Мерэ) — это последовательность элементов числового пространства.
Обобщённый четырёхугольник — это структура инцидентности, главное свойство которой — отсутствие треугольников (однако структура содержит много четырёхугольников). Обобщённый четырёхугольник является по определению полярным пространством ранга два. Обобщённые четырёхугольники являются обобщёнными многоугольниками с n = 4 и почти 2n-угольниками с n = 2. Они являются также в точности частичными геометриями pg(s,t,α) с α = 1.
В теории категорий
диаграмма — это категорный аналог индексированного множества в теории множеств. Основное различие в том, что в категории есть морфизмы, которые тоже нужно индексировать.
Двои́чное де́рево — иерархическая структура данных, в которой каждый узел имеет не более двух потомков (детей). Как правило, первый называется родительским узлом, а дети называются левым и правым наследниками. Двоичное дерево не является упорядоченным ориентированным деревом.Для практических целей обычно используют два подвида двоичных деревьев — двоичное дерево поиска и двоичная куча.
Упорядоченное поле — алгебраическое поле, для всех элементов которого определён линейный порядок, согласованный с операциями поля. Наиболее практически важными примерами являются поля рациональных и вещественных чисел.
Сглаживающий сплайн (англ. smoothing spline) это метод сглаживания (аппроксимации кривой набора зашумлённых исходных данных) с использованием сплайн-функций.
Циклический ранг ориентированного графа — мера связности орграфа, предложенная Эгганом и Бучи. Это понятие интуитивно отражает, насколько близок орграф к направленному ациклическому графу (НАГ, en:DAG), когда циклический ранг НАГ равен нулю, в то время как ориентированный орграф порядка n с петлями в каждой вершине имеет циклический ранг n. Циклический ранг ориентированного графа тесно связан с глубиной дерева неориентированного графа и высотой итерации регулярных языков. Циклический ранг нашёл применение...
Диаграмма Насси — Шнейдермана (англ. Nassi — Shneiderman diagram) — это графический способ представления структурированных алгоритмов и программ, разработанный в 1972 году американскими аспирантами Беном Шнейдерманом и Айзеком Насси.
В геометрии подстановки плиток — это метод построения мозаик. Наиболее важно, что некоторые подстановки плиток образуют апериодические мозаики, то есть замощения, протоплитки которых не образуют какую-либо мозаику с параллельным переносом. Наиболее известные из них — мозаики Пенроуза. Подстановочные мозаики являются специальными случаями правил конечного подразделения, когда не требуется геометрическое равенство плиток.
Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.
Треуго́льная ма́трица — в линейной алгебре квадратная матрица, у которой все элементы, стоящие ниже (или выше) главной диагонали, равны нулю.
n-Мерная
целочисленная решётка (или кубическая решётка), обозначается Zn, — это решётка в евклидовом пространстве Rn, точки которой являются n-кортежами целых чисел. Двумерная целочисленная решётка называется также квадратной решёткой. Zn является наиболее простым примером решётки корней. Целочисленная решётка является нечётной унимодулярной решёткой.
Тип-сумма (англ. sum type; также Σ-тип, меченое объединение) — конструкция в языках программирования и интуиционистской теории типов, тип данных, построенный как дизъюнктное объединение исходных типов.
В теории категорий, категория запятой — специальная конструкция, предоставляющая способ изучения морфизмов не как соотнесений объектов категории друг с другом, а как самостоятельных объектов. Название «категория запятой» появилось из-за первоначального (придуманного Ловером) обозначения, которое включало в себя знак запятой. Впоследствии стандартное обозначение изменилось из соображений удобства.
Разбиение единицы — конструкция, используемая в топологии для удобства работы с многообразием как множеством карт.
Абстрактное синтаксическое дерево (АСД) — в информатике конечное помеченное ориентированное дерево, в котором внутренние вершины сопоставлены (помечены) с операторами языка программирования, а листья — с соответствующими операндами. Таким образом, листья являются пустыми операторами и представляют только переменные и константы.
Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества.
Самоподобный объект — объект, в точности или приближённо совпадающий с частью себя самого (то есть целое имеет ту же форму, что и одна или более частей).
Подробнее: Самоподобие
Код Харари в теории графов — наибольшее из двоичных чисел, полученных при обработке матриц смежности.
Лемма о змее — это инструмент, используемый в математике, особенно в гомологической алгебре, для построения длинных точных последовательностей. Лемма о змее верна в любой абелевой категории и играет ключевую роль в гомологической алгебре и её приложениях, например в алгебраической топологии. Гомоморфизмы, построенные с её помощью, обычно называют связывающими гомоморфизмами.
Мультимножество в математике — обобщение понятия множества, допускающее включение одного и того же элемента по нескольку раз. Число элементов в мультимножестве, с учётом повторяющихся элементов, называется его размером или мощностью.
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
Циклический порядок — способ расположения множества объектов на окружности. В отличие от большинства структур, в теории порядка циклический порядок не моделируется бинарным отношением, таким как «a < b». Нельзя сказать, что восток «больше по часовой стрелке», чем запад. Вместо этого циклический порядок определяется как тернарное отношение , означающее, что «после a дoстигаем b раньше, чем c». Например, . Тернарное отношение называется циклическим порядком, если оно является циклическим, асимметричным...
Кэлеровы дифференциалы представляют собой адаптацию дифференциальных форм для произвольных коммутативных колец или схем. Это понятие было введено Эрихом Кэлером в 1930-х.
Подробнее: Кэлеров дифференциал
Разбие́ние мно́жества — это представление его в виде объединения произвольного количества попарно непересекающихся подмножеств.