Понятия со словом «полезно»
Связанные понятия
Переобучение (переподгонка, пере- в значении «слишком», англ. overfitting) в машинном обучении и статистике — явление, когда построенная модель хорошо объясняет примеры из обучающей выборки, но относительно плохо работает на примерах, не участвовавших в обучении (на примерах из тестовой выборки).
Проклятие размерности (ПР) — термин, используемый в отношении ряда свойств многомерных пространств и комбинаторных задач. В первую очередь это касается экспоненциального роста необходимых экспериментальных данных в зависимости от размерности пространства при решении задач вероятностно-статистического распознавания образов, машинного обучения, классификации и дискриминантного анализа. Также это касается экспоненциального роста числа вариантов в комбинаторных задачах в зависимости от размера исходных...
Оккамово обучение в теории вычислительного обучения является моделью алгоритмического обучения, где целью обучения является получение сжатого представления имеющихся тренировочных данных. Метод тесно связан с почти корректным обучением (ПК обучение, англ. Probably Approximately Correct learning, PAC learning), где учитель оценивает прогнозирующую способность тестового набора.
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Генерация столбцов или отложенная генерация столбцов — это эффективный подход к решению больших задач линейного программирования.
Байесовское программирование — это формальная система и методология определения вероятностных моделей и решения задач, когда не вся необходимая информация является доступной.
Двоичная, бинарная или дихотомическая классификация — это задача классификации элементов заданного множества в две группы (предсказание, какой из групп принадлежит каждый элемент множества) на основе правила классификации. Контекст, в котором требуется решение, имеет ли объект некоторое качественное свойство, некоторые специфичные характеристики или некоторую типичную двоичную классификацию, включает...
Модель жизнеспособной системы (англ. viable system model, VSM) является моделью организационной структуры любого жизнеспособного организма или автономной системы. Жизнеспособной системой является любая система, способная поддерживать своё отдельное существование в определенной среде. Одна из основных особенностей жизнеспособных систем в том, что они могут адаптироваться к изменяющимся условиям окружающей среды.
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
Статистическая теория обучения — это модель для обучения машин на основе статистики и функционального анализа. Статистическая теория обучения имеет дело с задачами нахождения функции предсказывания, основанной на данных. Статистическая теория обучения привела к успешным приложениям в таких областях, как компьютерное зрение, распознавание речи, биоинформатика и бейсбол.
Поиск с возвратом, бэктрекинг (англ. backtracking) — общий метод нахождения решений задачи, в которой требуется полный перебор всех возможных вариантов в некотором множестве М. Как правило позволяет решать задачи, в которых ставятся вопросы типа: «Перечислите все возможные варианты …», «Сколько существует способов …», «Есть ли способ …», «Существует ли объект…» и т. п.
Семплирование по Гиббсу — алгоритм для генерации выборки совместного распределения множества случайных величин. Он используется для оценки совместного распределения и для вычисления интегралов методом Монте-Карло. Этот алгоритм является частным случаем алгоритма Метрополиса-Гастингса и назван в честь физика Джозайи Гиббса.
Эффективность алгоритма — это свойство алгоритма, которое связано с вычислительными ресурсами, используемыми алгоритмом. Алгоритм должен быть проанализирован с целью определения необходимых алгоритму ресурсов. Эффективность алгоритма можно рассматривать как аналог производственной производительности повторяющихся или непрерывных процессов.
В математической статистике
семплирование — обобщенное название методов манипулирования начальной выборкой при известной цели моделирования, которые позволяют выполнить структурно-параметрическую идентификацию наилучшей статистической модели стационарного эргодического случайного процесса.
Эвристический алгоритм (эвристика) — алгоритм решения задачи, включающий практический метод, не являющийся гарантированно точным или оптимальным, но достаточный для решения поставленной задачи. Позволяет ускорить решение задачи в тех случаях, когда точное решение не может быть найдено.
Закон необходимого разнообразия (англ. The Law of Requisite Variety) — кибернетический закон, сформулированный Уильямом Россом Эшби и формально доказанный в работе «Введение в кибернетику».
Ме́тод проб и оши́бок (в просторечии также: метод (научного) тыка) — является врождённым эмпирическим методом мышления человека. Также этот метод называют методом перебора вариантов.
Выделение признаков — это процесс снижения размерности, в котором исходный набор сырых переменных сокращается до более управляемых групп (признаков) для дальнейшей обработки, оставаясь при этом достаточным набором для точного и полного описания исходного набора данных.
Удаление общих подвыражений (англ. Common subexpression elimination или CSE) — оптимизация компилятора, которая ищет в программе вычисления, выполняемые более одного раза на рассматриваемом участке, и удаляет вторую и последующие одинаковые операции, если это возможно и эффективно. Данная оптимизация требует проведения анализа потока данных для нахождения избыточных вычислений и практически всегда улучшает время выполнения программы в случае применения.
Поиском
наилучшей проекции (англ. Projection Pursuit) называется статистический метод, состоящий в нахождении такой проекции многомерных данных, для которой достигает максимума некоторая функция качества проекции.
Функция приспособленности (англ. fitness function) — вещественная или целочисленная функция одной или нескольких переменных, подлежащая оптимизации в результате работы генетического алгоритма, направляет эволюцию в сторону оптимального решения. Является одним из частных случаев целевой функции.
Человеческая
память ассоциативна, то есть некоторое воспоминание может порождать большую связанную с ним область. Один предмет напоминает нам о другом, а этот другой о третьем. Если позволить нашим мыслям, они будут перемещаться от предмета к предмету по цепочке умственных ассоциаций. Например, несколько музыкальных тактов могут вызвать целую гамму чувственных воспоминаний, включая пейзажи, звуки и запахи. Напротив, обычная компьютерная память является локально адресуемой, предъявляется адрес и извлекается...
Обучение на примерах (англ. Learning from Examples) - вид обучения, при котором интеллектуальной системе предъявляется набор положительных и отрицательных примеров, связанных с какой-либо заранее неизвестной закономерностью. В интеллектуальных системах вырабатываются решающие правила, с помощью которых происходит разделение множества примеров на положительные и отрицательные. Качество разделения, как правило, проверяется экзаменационной выборкой примеров.
Конструирование признаков — это процесс использования предметной области данных для создания признаков, которые нужны для обучения машин. Конструирование признаков является фундаментом для приложений машинного обучения, трудным и затратным. Необходимости ручного конструирования признаков можно избежать при автоматизации прикладного обучения признакам.
Строковое ядро — это ядерная функция, определённая на строках, т.е. конечных последовательностях символов, которые не обязательно имеют одну и ту же длину. Строковые ядра можно интуитивно понимать как функции, измеряющие похожесть пар строк — чем больше похожи две строки a и b, тем больше значение строкового ядра K(a, b).
Упругая карта служит для нелинейного сокращения размерности данных. В многомерном пространстве данных располагается поверхность, которая приближает имеющиеся точки данных и при этом является, по возможности, не слишком изогнутой. Данные проецируются на эту поверхность и потом могут отображаться на ней, как на карте. Её можно представлять себе как упругую пластину, погруженную в пространство данных и прикрепленную к точкам данных пружинками. Служит обобщением метода главных компонент (в котором вместо...
Робастность (англ. robustness, от robust — «крепкий», «сильный», «твёрдый», «устойчивый») — свойство статистического метода, характеризующее независимость влияния на результат исследования различного рода выбросов, устойчивости к помехам. Выбросоустойчивый (робастный) метод — метод, направленный на выявление выбросов, снижение их влияния или исключение их из выборки.
Градиентный спуск — метод нахождения локального экстремума (минимума или максимума) функции с помощью движения вдоль градиента. Для минимизации функции в направлении градиента используются методы одномерной оптимизации, например, метод золотого сечения. Также можно искать не наилучшую точку в направлении градиента, а какую-либо лучше текущей.
Алгоритм Баума — Велша используется в информатике и статистике для нахождения неизвестных параметров скрытой марковской модели (HMM). Он использует алгоритм прямого-обратного хода и является частным случаем обобщённого EM-алгоритма.
В настоящее время отсутствует единое определение точно решаемой задачи для всех разделов математики. Это обусловлено особенностями самих задач и методов поиска их решения. Вместе с тем базовые теоремы, определяющие наличие и единственность решений, строятся на общих принципах, что будет показано ниже.
Подробнее: Точнорешаемая задача
Винеровское оценивание — задача нахождения импульсной характеристики линейной стационарной системы, дающей на выходе оптимальную в смысле минимума математического ожидания средней квадратической ошибки оценку значений полезного сигнала, поступающего на вход в аддитивной смеси с шумом.
В обучении машин вероятностный классификатор — это классификатор, который способен предсказывать, если на входе заданы наблюдения, распределение вероятностей над множеством классов, а не только вывод наиболее подходящего класса, к которому наблюдения принадлежат. Вероятностные классификаторы обеспечивают классификацию, которая может быть полезна сама по себе или когда классификаторы собираются в ансамбли.
Алгоритм Гёрцеля (англ. Goertzel algorithm) — это специальная реализация дискретного преобразования Фурье (ДПФ) в форме рекурсивного фильтра. Данный алгоритм был предложен Джеральдом Гёрцелем в 1958 году. В отличие от быстрого преобразования Фурье, вычисляющего все частотные компоненты ДПФ, алгоритм Гёрцеля позволяет эффективно вычислить значение одного частотного компонента.
Квадратичное программирование (англ. quadratic programming, QP) — это процесс решения задачи оптимизации специального типа, а именно — задачи оптимизации (минимизации или максимизации) квадратичной функции нескольких переменных при линейных ограничениях на эти переменные. Квадратичное программирование является частным случаем нелинейного программирования.
Обучение дерева решений использует дерево решений (как предиктивную модель), чтобы перейти от наблюдений над объектами (представленными в ветвях) к заключениям о целевых значениях объектов (представленных в листьях). Это обучение является одним из подходов моделирования предсказаний, используемых в статистике, интеллектуальном анализе данных и обучении машин. Модели деревьев, в которых целевая переменная может принимать дискретный набор значений, называются деревьями классификации. В этих структурах...
Метод обратного распространения ошибки (англ. backpropagation) — метод вычисления градиента, который используется при обновлении весов многослойного перцептрона. Впервые метод был описан в 1974 г. А. И. Галушкиным, а также независимо и одновременно Полом Дж. Вербосом. Далее существенно развит в 1986 г. Дэвидом И. Румельхартом, Дж. Е. Хинтоном и Рональдом Дж. Вильямсом и независимо и одновременно С.И. Барцевым и В.А. Охониным (Красноярская группа). Это итеративный градиентный алгоритм, который используется...
Локальный уровень выброса является алгоритмом в выявлении аномалий, который предложили Маркус М. Бройниг, Ганс-Петер Кригель, Реймонд Т. Нг и Ёрг Сандер в 2000 году для нахождения аномальных точек данных путём измерения локального отклонения данной точки данных с учётом её соседей.
Ме́тод моме́нтов — метод оценки неизвестных параметров распределений в математической статистике и эконометрике, основанный на предполагаемых свойствах моментов (Пирсон, 1894 г.). Идея метода заключается в замене истинных соотношений выборочными аналогами.
Многозна́чная зави́симость (тж. МЗЗ) — обобщение понятия функциональной зависимости, широко использующееся в теории баз данных. В концепции нормальных форм вводится для формального определения четвертой нормальной формы...
Метод Стронгина — метод решения одномерных задач условной липшицевой оптимизации. Позволяет находить глобально оптимальное решение в задачах с ограничениями неравенствами при условии, что целевая функция задачи и левые части неравенств удовлетворяют условию Липшица в области поиска.
В теории вычислительной сложности сложность алгоритма в среднем — это количество неких вычислительных ресурсов (обычно — время), требуемое для работы алгоритма, усреднённое по всем возможным входным данным. Понятие часто противопоставляется сложности в худшем случае, где рассматривается максимальная сложность алгоритма по всем входным данным.
Тест стандартными прогрессивными матрицами Равена (Рейвена) — тест, предназначенный для дифференцировки испытуемых по уровню их интеллектуального развития. Авторы теста Джон Рейвен и Л. Пенроуз. Предложен в 1936 году. Тест Равена известен как один из наиболее «чистых» измерений фактора общего интеллекта g, выделенного Ч.Э. Спирменом. Успешность выполнения теста SPM интерпретируется как показатель способности к научению на основе обобщения собственного опыта и создания схем, позволяющих обрабатывать...
Тестирование чёрного ящика или поведенческое тестирование — стратегия (метод) тестирования функционального поведения объекта (программы, системы) с точки зрения внешнего мира, при котором не используется знание о внутреннем устройстве тестируемого объекта. Под стратегией понимаются систематические методы отбора и создания тестов для тестового набора. Стратегия поведенческого теста исходит из технических требований и их спецификаций.
Принцип минимальной длины описания (англ. minimum description length, MDL) — это формализация бритвы Оккама, в которой лучшая гипотеза (модель и её параметры) для данного набора данных это та, которая ведёт к лучшему сжиманию даных. Принцип MDL предложил Йорма Риссанен в 1978. Принцип является важной концепцией в теории информации и теории вычислительного обучения.
Ядерные методы в машинном обучении — это класс алгоритмов распознавания образов, наиболее известным представителем которого является метод опорных векторов (МОВ, англ. SVM). Общая задача распознавания образов — найти и изучить общие типы связей (например, кластеров, ранжирования, главных компонент, корреляций, классификаций) в наборах данных. Для многих алгоритмов, решающих эти задачи, данные, представленные в сыром виде, явным образом преобразуются в представление в виде вектора признаков посредством...
Подробнее: Ядерный метод