Понятия со словом «доминошка»
Связанные понятия
Исчезновение клетки (появление клетки) — известный класс задач (оптических иллюзий) на перестановку фигур, обладающих признаками софизмов: изначально в их условие введена замаскированная ошибка. Некоторые из этих задач тесно связаны со свойствами последовательности чисел Фибоначчи.
«Перебрось мостик», бридж-ит, «трубопровод», «птичья клетка», переключательная игра Шеннона или игра Гейла — абстрактная игра типа гекса для двух игроков. Игра придумана в середине XX века независимо Дэвидом Гейлом и Клодом Шенноном. В 1958 году Мартин Гарднер показал игру широкой публике в своей колонке в Scientific American. Хотя в бридж-ит можно играть и на бумаге, американские производители игрушек делали игральные комплекты.
Солитер — это настольная игра для одного игрока, в которой переставляются колышки на доске с отверстиями. Некоторые комплекты используют шарики и доски с выемками. В США игра имеет название Peg Solitaire (колышковый солитер), а название Солитер относится к пасьянсу. В Великобритании игра известна под именем Solitaire (солитер), а карточная игра называется Patience (пасьянс). В некоторых местах, в частности, в Индии, игра носит название Brainvita.
Набор плиток с самозамощением (англ. setiset) порядка n — это набор из n фигур, обычно плоских, каждая из которых допускает замощение меньшими копиями тех же n фигур. Более точно, n фигур могут быть собраны n различными способами, дающими большие копии фигур из того же набора, и коэффициент увеличения один и тот же. Рисунок 1 показывает пример для n = 4 с использованием декамино различной формы. Концепцию можно обобщить и использовать фигуры большей размерности. Название setisets дал Ли Сэллоус (англ...
Куб принца Руперта (англ. Prince Rupert’s cube) — самый большой куб, который может пройти через отверстие, вырезанное в единичном кубе (то есть через куб, рёбра которого имеют размер 1). Ребро куба Руперта приблизительно на 6 % длиннее, чем ребро куба, через который он проходит. Задача поиска такого куба тесно связана с задачей поиска самого большего квадрата, который полностью расположен в пределах единичного куба, и имеет аналогичное решение.
Свёртка последовательностей — это результат перемножения элементов двух заданных числовых последовательностей таким образом, что члены одной последовательности берутся с возрастанием индексов, а члены другой — с убыванием (что и служит основанием для принятого названия данной операции).
Гексофен (или гексашахматы) — двухсторонняя шахматная игра на трёхцветной правильной шестиугольной доске с 91 клеткой. Разработана В. Трубицыным (Россия, Санкт-Петербург) в 1997 году. Представляет собой переработку гексагональных шахмат Глинского.
Группа орнамента (или группа плоской симметрии, или плоская кристаллографическая группа) — это математическая классификация двумерных повторяющихся узоров, основанных на симметриях. Такие узоры часто встречаются в архитектуре и декоративном искусстве. Существует 17 возможных различных групп.
Пифагорова мозаика (замощение двумя квадратами) — замощение евклидовой плоскости квадратами двух различных размеров, в которой каждый квадрат касается четырёх квадратов другого размера своими четырьмя сторонами. Исходя из этой мозаики, можно доказать (наглядно) теорему Пифагора, за что мозаика и получила название пифагоровой. Мозаика часто используется в качестве узора для кафельного пола. В этом контексте мозаика известна также как узор классов.
Разделённая квадратная мозаика (или тетракис-квадратная мозаика — это мозаика в евклидовой плоскости, которая строится из квадратной мозаики путём деления каждого квадрата на четыре равнобедренных прямоугольных треугольника с вершинами в центрах квадратов, в результате чего образуется бесконечная конфигурация прямых. Мозаика может быть также построена путём деления каждого квадрата решётки на два треугольника диагональю, при этом диагонали соседних квадратов имеют различное направление. Мозаику можно...
Классики или классы — старинная детская игра, популярная во всём мире, включая Россию. Играется, как правило, на асфальте, расчерченном мелом на квадратики или другие фигуры («классы»). Играющие, прыгая на одной ноге без ограничения числа прыжков, ей же толкают «бит(к)у» (например, баночку из-под гуталина или шайбу) из квадрата в следующий квадрат, стараясь не попасть битой на черту и не наступить на черту ногой. Совсем маленьким детям разрешается прыгать на двух ногах.
Скьюб (англ. Skewb) — механическая головоломка в стиле кубика Рубика, состоящая из частей, которые вращаются и меняют своё положение. Название происходит от английских слов skew (искривлен) и cube (куб). Скьюб был изобретен английским журналистом Тони Дарема, и первоначально имел название «Кубик-пирамидка» (англ. Cube Pyraminx). Дуглас Хофстадтер придумал слово «Skewb», которое было употреблено впервые в статье журнала Scientific American в июле 1982 года.
В вычислительной геометрии известна задача об определении принадлежности точки многоугольнику. На плоскости даны многоугольник и точка. Требуется решить вопрос о принадлежности точки многоугольнику.
Подробнее: Задача о принадлежности точки многоугольнику
Делящаяся плитка (англ. rep-tile) — понятие геометрии мозаик, фигура, которую можно разрезать на меньшие копии самой фигуры. В 2012 обобщение делящихся мозаик с названием self-tiling tile set (набор плиток с самозамощением) было предложено английским математиком Ли Сэлоусом в журнале Mathematics Magazine .
Конфигурация прямых (или разбиение плоскости прямыми) — это разбиение плоскости, образованное набором прямых.
Задача Наполеона — знаменитая задача построения с помощью циркуля. В этой задаче дана окружность и её центр. Задача состоит в делении окружности на четыре равных дуги с помощью только циркуля. Наполеон был известным любителем математики, но неизвестно, он ли придумал или решил эту задачу. Друг Наполеона итальянский математик Лоренцо Маскерони придумал при геометрических построениях ограничение на использование только циркуля (не использовать линейку). Но, фактически, задача выше является более простой...
Инверсия кривой — результат применения операции инверсии к заданной кривой C. По отношению к фиксированной окружности с центром O и радиусом k инверсия точки Q — это точка P, лежащая на луче OQ, и OP•OQ = k2. Инверсия кривой C — это множество всех точек P, являющихся инверсиями точек Q, принадлежащих кривой C. Точка O в этом построении называется центром инверсии, окружность называется окружностью инверсии, а k — радиусом инверсии.
Шестиуго́льный парке́т (шестиугольный паркета́ж) или шестиугольная мозаика — замощение плоскости равными правильными шестиугольниками, расположенными сторона к стороне.
В геометрии конфигурацией
Мёбиуса или тетраэдрами Мёбиуса называется конфигурация в евклидовом пространстве или проективном пространстве, состоящая из двух взаимно вписанных тетраэдров — каждая вершина одного тетраэдра лежит на плоскости, проходящей через грань другого тетраэдра и наоборот. Таким образом, в результирующей системе восьми точек и восьми плоскостей каждая точка лежит на четырёх плоскостях (три плоскости определяют вершину тетраэдра, а четвёртая плоскость — это плоскость, проходящая...
Расстояние Фреше — это мера сходства кривых, принимающая во внимание число и порядок точек вдоль кривых. Расстояние названо по имени французского математика Мориса Фреше.
Ве́кторная диагра́мма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов. Векторные диаграммы широко применяются в электротехнике, акустике, оптике, теории колебаний и так далее.
В евклидовой геометрии равнобедренная трапеция — это выпуклый четырёхугольник с осью симметрии, проходящей через середины двух противоположных сторон. Этот четырёхугольник является частным случаем трапеций. В любой равнобедренной трапеции две противоположные стороны (основания) параллельны, а две другие стороны (боковые) имеют одинаковые длины (свойство, которому удовлетворяет также параллелограмм). Диагонали также имеют одинаковые длины. Углы при каждом основании равны и углы при разных основаниях...
Пятиугольный паркет — в геометрии: замощение, составленное из выпуклых пятиугольников. Замощение из правильных пятиугольников в евклидовом пространстве невозможно, поскольку общий угол правильного пятиугольника равен 108° и не делит ни 180°, ни 360°. Однако, ими можно замостить гиперболическую плоскость и сферу.
Метод шаров и перегородок (англ. stars and bars — букв. «звёздочки и чёрточки») — это графический метод для вывода некоторых комбинаторных теорем. Метод популяризировал Уильям Феллер в его классической книге по теории вероятностей. Метод может быть использован для решения многих простых задач подсчёта, таких как «сколькими способами можно разложить n неразличимых шаров по k различимым ящикам».
Прямолинейный скелет — это метод представления многоугольника его топологическим скелетом. Прямолинейный скелет подобен в некотором роде срединным осям, но отличается тем, что скелет состоит из отрезков, в то время как срединные оси многоугольника могут включать параболические кривые.
Алгоритм Брезенхе́ма (англ. Bresenham's line algorithm) — это алгоритм, определяющий, какие точки двумерного растра нужно закрасить, чтобы получить близкое приближение прямой линии между двумя заданными точками. Это один из старейших алгоритмов в машинной графике — он был разработан Джеком Элтоном Брезенхэмом (англ. Jack Elton Bresenham) в компании IBM в 1962 году. Алгоритм широко используется, в частности, для рисования линий на экране компьютера. Существует обобщение алгоритма Брезенхэма для построения...
Блокус — абстрактная стратегическая настольная игра для двух, трёх или четырёх человек, изобретённая французским математиком Бернардом Тавитианом. Впервые издана во Франции, в 2000 году. Существуют несколько видов блокуса: классический (Blokus Classic), для двоих (Blokus Duo или Blokus Travel), треугольный (Blokus Trigon) и трёхмерный (Blokus 3D). За время своего существования блокус получил 26 различных наград.
Внеописанный четырёхугольник — это выпуклый четырёхугольник, продолжения всех четырёх сторон которого являются касательными к окружности (вне четырёхугольника). Окружность называется вневписанной. Центр вневписанной окружности лежит на пересечении шести биссектрис. Это биссектрисы двух внутренних углов противоположных углов четырёхугольника, биссектрисы внешних углов двух других вершин, и биссектрисы внешних углов в точках пересечения продолжений противоположных сторон (смотрите рисунок справа, указанные...
Октамино — восьмиклеточные полимино, то есть плоские фигуры, состоящие из восьми равных квадратов, соединённых сторонами. С фигурами октамино, как со всеми полимино, связано много задач занимательной математики.
Треуго́льный парке́т (треугольный паркета́ж) или треугольная мозаика — это замощение плоскости равными правильными треугольниками, расположенными сторона к стороне.
Диаграмма Насси — Шнейдермана (англ. Nassi — Shneiderman diagram) — это графический способ представления структурированных алгоритмов и программ, разработанный в 1972 году американскими аспирантами Беном Шнейдерманом и Айзеком Насси.
Касательная прямая к окружности в евклидовой геометрии на плоскости — прямая, которая имеет с окружностью ровно одну общую точку. Также можно определить касательную как предельное положение секущей, когда точки пересечения её с окружностью бесконечно сближаются. Касательные прямые к окружностям служат предметом рассмотрения ряда теорем и играют важную роль во многих геометрических построениях и доказательствах.
Гептамино — семиклеточное полимино, то есть плоская фигура, состоящая из семи равных квадратов, соединённых сторонами. С фигурами гептамино, как со всеми полимино, связано много задач занимательной математики.
В математике конечное правило подразделения — это рекурсивный способ деления многоугольника и других двумерных фигур на всё меньшие и меньшие части. Правила подразделения в этом смысле является обобщением фракталов. Вместо повторения одного и того же узора снова и снова здесь имеются небольшие изменения на каждом шаге, что позволяет получить более богатые структуры, сохраняя при этом поддержку элегантного стиля фракталов . Правила подразделения используются в архитектуре, биологии и информатике...
Заполняющие пространство деревья — это геометрические построения, аналогичные кривым Пеано, но имеет ветвящуюся подобно дереву структуру и корень. Заполняющее пространство дерево определяется пошаговым процессом, который даёт дерево, в котором любая точка пространства имеет конечной длины путь, который сходится к данной точке. В отличие от заполняющих пространство кривых, каждый путь в дереве короток, что позволяет любую часть пространства достичь из корня...
Многоугольник видимости или область видимости для точки p на плоскости среди препятствий — это (возможно неограниченная) многоугольная область всех точек плоскости, видимых из точки p. Многоугольник видимости можно определить для видимости из отрезка или многоугольника. Многоугольники видимости полезны в робототехнике, компьютерных играх и для определения позиций объектов, например, для определеиня наилучшего расположения охраны в картинных галереях.
Одновременное вложение графов — это техника визуализации двух и более различных графов на одном и том же множестве помеченных вершин, при которой избегается пересечения рёбер в каждом из графов. Пересечения между рёбрами разных графов разрешаются, не разрешается только пересечение рёбер одного графа.
Набор окружностей
Джонсона состоит из трёх окружностей одинакового радиуса r, имеющих одну общую точку пересечения H. В такой конфигурации окружности обычно имеют четыре точки пересечения (точки, через которые проходят по меньшей мере две окружности) — это общая точка пересечения H, через которую проходят все три окружности, и по дополнительной точке для каждой пары окружностей (будем о них говорить как о попарных пересечениях). Если любые две окружности не пересекаются (а только лишь касаются) они...
Двойственная кривая (или дуальная кривая) к заданной кривой на проективной плоскости — это кривая на двойственной проективной плоскости, состоящая из касательных к заданной гладкой кривой. В этом случае кривые называются взаимно двойственными (дуальными). Понятие может быть обобщено для негладких кривых и на многомерное пространство.
В геометрии усечённая квадратная мозаика — это полуправильные мозаики из правильных многоугольников на евклидовой плоскости с одним квадратом и двумя восьмиугольниками в каждой вершине. Это единственная мозаика из правильных выпуклых многоугольников, содержащая соприкасающиеся сторонами восьмиугольники. Символ Шлефли мозаики равен t{4,4}.
Разбиение многоугольника — это множество примитивных элементов (например, квадратов), которые не накладываются и объединение которых равно многоугольнику. Задача о разбиении многоугольника — это задача поиска разбиения, которое в некотором смысле минимально, например, разбиение с наименьшим числом элементов или разбиение с наименьшей суммой длин сторон.
Плосконосая квадратная мозаика — это полуправильное замощение плоскости. В каждой вершине сходятся три треугольника и два квадрата. Символ Шлефли мозаики — s{4,4}.
В геометрии пространственный многоугольник — это многоугольник, вершины которого не компланарны. Пространственные многоугольники должны иметь по меньшей мере 4 вершины. Внутренняя поверхность таких многоугольников однозначно не определяется.
Дуговая диаграмма — это стиль представления графа, в котором вершины располагаются вдоль прямой на евклидовой плоскости, а рёбра рисуются в виде полуокружностей на одной из двух полуплоскостей, либо в виде гладких кривых, образованных полуокружностями. В некоторых случаях отрезки прямой также используются для представления рёбер графа, если они соединяют соседние вершины на прямой.
Вложение Татта или барицентричное вложение простого вершинно 3-связного планарного графа — вложение без пересечений с рёбрами в виде отрезков с дополнительными свойствами, что внешняя грань имеет выпуклый многоугольник в качестве границы и что каждая внутренняя вершина является геометрическим центром соседей. Если внешний многоугольник фиксирован, это условие на внутренние вершины определяет их положения однозначно как решение системы линейных уравнений. Решение уравнений даёт планарное вложение...
Плитки Вана (или домино Вана), впервые предложенные математиком, логиком и философом Хао Ваном в 1961, — это класс формальных систем. Они моделируются визуально с помощью квадратных плиток с раскрашиванием каждой стороны. Определяется набор таких плиток (например, как на иллюстрации), затем копии этих плиток прикладываются друг к другу с условием согласования цветов сторон, но без вращения или симметрического отражения плиток.
Однородная мозаика может существовать как на евклидовой плоскости, так и на гиперболической плоскости. Однородные мозаики связаны с конечными однородными многогранниками, которые можно считать однородными замощениями сферы.