Связанные понятия
Энтропи́я (от др.-греч. ἐν «в» + τροπή «обращение; превращение») — широко используемый в естественных и точных науках термин. Впервые введён в рамках термодинамики как функция состояния термодинамической системы. Энтропия определяет меру необратимого рассеивания энергии или бесполезности энергии, ибо не всю энергию системы можно использовать для превращения в какую-нибудь полезную работу. Для понятия энтропии в данном разделе физики используют название термодинамическая энтропия. Термодинамическая...
Равнове́сный тепловой процесс — тепловой процесс, в котором система проходит непрерывный ряд бесконечно близких равновесных термодинамических состояний.
Термодинамическое равновесие — состояние системы, при котором остаются неизменными во времени макроскопические величины этой системы (температура, давление, объём, энтропия) в условиях изолированности от окружающей среды. В общем, эти величины не являются постоянными, они лишь флуктуируют (колеблются) возле своих средних значений. Если равновесной системе соответствует несколько состояний, в каждом из которых система может находиться неопределенно долго, то о системе говорят, что она находится в...
Квазистатический процесс в термодинамике — идеализированный процесс, состоящий из непрерывно следующих друг за другом квазистатических состояний, в которых характеризующие систему термодинамические величины за время наблюдения не изменяются. Если каждое такое квазистатическое состояние системы близко к состоянию равновесия и, следовательно, систему в каждый момент времени можно считать находящейся в термодинамическом равновесии, то такие процессы называют равновесными, или, точнее, квазиравновесными...
Самоорганиза́ция — процесс упорядочения элементов одного уровня в системе за счёт внутренних факторов, без внешнего специфического воздействия (изменение внешних условий может также быть стимулирующим либо подавляющим воздействием).
Второе начало термодинамики (второй закон термодинамики) устанавливает существование энтропии как функции состояния термодинамической системы и вводит понятие абсолютной термодинамической температуры, то есть «второе начало представляет собой закон об энтропии» и её свойствах. В изолированной системе энтропия остаётся либо неизменной, либо возрастает (в неравновесных процессах), достигая максимума при установлении термодинамического равновесия (закон возрастания энтропии). Встречающиеся в литературе...
Термодина́мика (греч. θέρμη — «тепло», δύναμις — «сила») — раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах. В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика — это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации...
Обратимый процесс — равновесный термодинамический процесс, который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений. Количественным критерием обратимости/необратимости процесса служит возникновение энтропии — эта величина равна нулю при отсутствии необратимых процессов в термодинамической системе и положительна...
Диссипативная система (или диссипативная структура, от лат. dissipatio — «рассеиваю, разрушаю») — это открытая система, которая оперирует вдали от термодинамического равновесия. Иными словами, это устойчивое состояние, возникающее в неравновесной среде при условии диссипации (рассеивания) энергии, которая поступает извне. Диссипативная система иногда называется ещё стационарной открытой системой или неравновесной открытой системой.
Аксиоматика термодинамики имеет своей задачей выявление структуры термодинамических понятий и законов с целью логически непротиворечивого введения в научный оборот макроскопических физических величин, которым не даётся определения в других разделах физики, — внутренней энергии, энтропии и температуры: «в термодинамику вводятся две новые физические величины — энтропия и абсолютная температура; этот шаг подлежит обоснованию». Существует и другое представление о роли аксиоматики в термодинамике (Г...
Вну́тренняя эне́ргия — принятое в физике сплошных сред, термодинамике и статистической физике название для той части полной энергии термодинамической системы, которая не зависит от выбора системы отсчета и которая в рамках рассматриваемой проблемы может изменяться. То есть для равновесных процессов в системе отсчета, относительно которой центр масс рассматриваемого макроскопического объекта покоится, изменения полной и внутренней энергии всегда совпадают. Перечень составных частей полной энергии...
Энтропия Вселенной — величина, характеризующая степень неупорядоченности и тепловое состояние Вселенной.
Третье начало термодинамики (теорема Нернста, тепловая теорема Нернста) — физический принцип, определяющий поведение энтропии при приближении температуры к абсолютному нулю. Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных по термодинамике гальванических элементов. Теорема сформулирована Вальтером Нернстом в 1906 году. Современная формулировка теоремы принадлежит Максу Планку.
Термостатика — одно из названий классической термодинамики, акцентирующее внимание на том, что эта научная дисциплина представляет собой феноменологическую теорию стационарных состояний и квазистатических процессов в сплошных средах, и в явном виде отражающее современное деление термодинамики на статическую и нестатическую части — равновесную термодинамику и неравновесную термодинамику.
Адиабатическая теорема — теорема квантовой механики. Впервые была сформулирована Максом Борном и Владимиром Фоком в 1928 году в таком виде...
Пе́рвое нача́ло термодина́мики (первый закон термодинамики) — один из основных законов этой дисциплины, представляющий собой конкретизацию общефизического закона сохранения энергии для термодинамических систем, в которых необходимо учитывать термические, массообменные и химические процессы. В форме закона сохранения (уравнения баланса энергии) первое начало используют в термодинамике потока и в неравновесной термодинамике. В равновесной термодинамике под первым законом термодинамики обычно подразумевают...
Закон транзитивности термического равновесия (нулевой закон, нулевое начало термодинамики) вводит в физику представление об эмпирической температуре как физической величине, пригодной для характеристики состояния очень многих макроскопических объектов. Примером макроскопического объекта, не нуждающегося в использовании температуры и прочих термических величин для описания своего состояния, служит абсолютно твёрдое тело. Термические системы, то есть макроскопические системы, к которым применимо понятие...
Эксергия — предельное (наибольшее или наименьшее) значение энергии, которое может быть полезным образом использовано (получено или затрачено) в термодинамическом процессе с учётом ограничений, накладываемых законами термодинамики; та максимальная работа, которую может совершить макроскопическая система при квазистатическом переходе из заданного состояния в состояние равновесия с окружающей средой (эксергия процесса положительна), или та минимальная работа, которую необходимо затратить на квазистатический...
Пра́вило фаз (или правило фаз Гиббса) — соотношение, связывающее число компонентов, фаз и термодинамических степеней свободы в равновесной термодинамической системе. Роль правила фаз особенно велика при рассмотрении гетерогенных равновесий в многофазных многокомпонентных системах.
Негэнтропи́я — философский и физический термин, образованный добавлением отрицательной приставки нег- (от лат. negativus — отрицательный) к понятию энтропия, и обозначающий его противоположность. В самом общем смысле противоположен по смыслу энтропии и означает меру упорядоченности и организованности системы или качество имеющейся в системе энергии. Термин иногда используется в физике и математике (теории информации, математической статистике) для обозначения величины, математически противоположной...
Динами́ческий ха́ос — явление в теории динамических систем, при котором поведение нелинейной системы выглядит случайным, несмотря на то, что оно определяется детерминистическими законами. В качестве синонима часто используют название детерминированный хаос; оба термина полностью равнозначны и используются для указания на существенное отличие хаоса как предмета научного изучения в синергетике от хаоса в обыденном смысле.
Фазовые переходы второго рода — фазовые переходы, при которых вторые производные термодинамических потенциалов по давлению и температуре изменяются скачкообразно, тогда как их первые производные изменяются постепенно. Отсюда следует, в частности, что энергия и объём вещества при фазовом переходе второго рода не изменяются, но изменяются его теплоёмкость, сжимаемость, различные восприимчивости и т. д.
Стационарность или постоянство — свойство процесса не менять свои характеристики со временем. Понятие используется в нескольких разделах науки.
Парадо́кс Ги́ббса — отсутствие непрерывности для энтропии при переходе от смешения различных газов к смешению тождественных газов, когда, например, при переходе от бесконечно мало отличающихся идеальных газов к тождественным расчётное значение энтропии смешения падает скачком до нуля, что представляется неожиданным и нелогичным.
Критическая динамика — раздел теории критического поведения и статистической физики, описывающий динамические свойства физической системы в или вблизи критической точки. Является продолжением и обобщением критической статики, позволяя описывать величины и характеристики системы, которые нельзя выразить лишь через одновременны́е равновесные функции распределения. Такими величинами являются, например, коэффициенты переноса, скорости релаксации, разновременны́е корреляционные функции, функции отклика...
Квантовая диссипация - раздел физики, изучающий квантовые аналоги процесса необратимой потери энергии, наблюдаемого на классическом уровне. Основная задача этого раздела - вывести классические законы диссипации, используя квантовую механику.
Открытая система в теории систем — система, которая непрерывно взаимодействует со своей средой. Взаимодействие может принимать форму информации, энергии или материальных преобразований на границе с системой. Открытая система противопоставляется изолированной, которая не обменивается энергией, веществом или информацией с окружающей средой.
Зако́ны сохране́ния — фундаментальные физические законы, согласно которым при определённых условиях некоторые измеримые физические величины, характеризующие замкнутую физическую систему, не изменяются с течением времени. Являются наиболее общими законами в любой физической теории. Имеют большое эвристическое значение.
Декогере́нция — это процесс нарушения когерентности (от лат. cohaerentio — сцепление, связь), вызываемый взаимодействием квантовомеханической системы с окружающей средой посредством необратимого, с точки зрения термодинамики, процесса. Во время протекания этого процесса у самой системы появляются классические черты, которые соответствуют информации, имеющейся в окружающей среде. То есть система смешивается или запутывается с окружающей средой.
Термодинамическая система — тело (совокупность тел), способное (способных) обмениваться с другими телами (между собой) энергией и (или) веществом; выделяемая (реально или мысленно) для изучения макроскопическая физическая система, состоящая из большого числа частиц и не требующая для своего описания привлечения микроскопических характеристик отдельных частиц, «часть Вселенной, которую мы выделяем для исследования». Единицей измерения числа частиц в термодинамической системе обычно служит число Авогадро...
Микроканонический ансамбль — статистический ансамбль макроскопической изолированной системы с постоянными значениями объёма V, числа частиц N и энергии E. Понятие микроканонического ансамбля является идеализацией, так как в действительности полностью изолированных систем не существует. В микроканоническом распределении Гиббса все микроскопические состояния, отвечающие данной энергии, равновероятны согласно эргодической гипотезе. Теорема Гиббса, доказанная автором, утверждает, что малую часть микроканонического...
Теоретическая тарелка (теоретическая ступень разделения) — теоретическая модель массообменных процессов в двухфазных средах, основанная на представлении массообменного устройства (тарелки) как теоретически идеальной, изолированной системы в состоянии термодинамического равновесия. Характеризует максимальную, теоретически возможную разницу концентраций компонентов в фазах при заданных условиях.
Динамическая система — множество элементов, для которого задана функциональная зависимость между временем и положением в фазовом пространстве каждого элемента системы. Данная математическая абстракция позволяет изучать и описывать эволюцию систем во времени.
Наблюдаемость в теории управления — свойство системы, показывающее, можно ли по выходу полностью восстановить информацию о состояниях системы.
Открытая система в статистической механике — механическая система, которая может обмениваться веществом и энергией с окружающей средой. Открытые системы взаимодействуют с внешней средой, причем полностью описать это взаимодействие и задать его некоторым гамильтонианом невозможно. Открытая система в равновесной статистической механике — это механическая система, число частиц в которой не остаётся постоянным.
В теории твердого тела, термин геометрическая фрустрация (или просто фрустрация, значению этого термина в психологии посвящена другая статья, см. фрустрация) означает явление, при котором геометрические свойства кристаллической решетки...
Подробнее: Геометрическая фрустрация
Тепловой процесс (термодинамический процесс) — изменение макроскопического состояния термодинамической системы. Если разница между начальным и конечным состояниями системы бесконечно мала, то такой процесс называют элементарным (инфинитезимальным).
Большо́й канони́ческий анса́мбль — статистический ансамбль, отвечающий физической системе, которая обменивается энергией и частицами с окружающей средой, но находится с ней в тепловом равновесии.
Открытая система в физике — физическая система, которую нельзя считать закрытой по отношению к окружающей среде в каком-либо аспекте — информационном, вещественном, энергетическом и т. д. Открытые системы могут обмениваться веществом, энергией, информацией с окружающей средой.
Изолированная система (замкнутая система) — термодинамическая система, которая не обменивается с окружающей средой ни веществом, ни энергией. В термодинамике постулируется (как результат обобщения опыта), что изолированная система постепенно приходит в состояние термодинамического равновесия, из которого самопроизвольно выйти не может (нулевое начало термодинамики).
Теория Гирарди — Римини — Вебера или теория ГРВ (англ. Ghirardi — Rimini — Weber theory, GRW) — одна из теорий объективного коллапса волновой функции в квантовой механике. Теория пытается решить проблему измерения и восполнить пробел в копенгагенской интерпретации, ответив на вопрос, как происходит коллапс волновой функции.
Теория бифуркаций динамических систем — это теория, которая изучает изменения качественной картины разбиения фазового пространства в зависимости от изменения параметра (или нескольких параметров).
Зако́н сохране́ния эне́ргии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системы может быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда закономерность, его можно именовать не законом, а принципом сохранения...
Тео́рия ха́оса — математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных при определённых условиях явлению, известному как хаос (динамический хаос, детерминированный хаос). Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной. Для акцентирования особого характера изучаемого в рамках этой теории явления обычно принято использовать название теория динамического хаоса.
Внутренняя энергия термодинамической системы может изменяться двумя способами: посредством совершения работы над системой и посредством теплообмена с окружающей средой. Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой. Теплота — это одна из основных термодинамических величин в классической феноменологической термодинамике. Количество теплоты входит в стандартные математические формулировки первого и второго...
Подробнее: Теплота
Закон перехода количественных изменений в качественные в диалектике Гегеля и материалистической диалектике, а также ряде близких философских концепций — всеобщий закон развития природы, материального мира, человеческого общества и мышления. Закон сформулирован Фридрихом Энгельсом в результате интерпретации логики Гегеля и философских работ Карла Маркса.
Во многих случаях для предсказания поведения реального газа допустимо использовать модель идеального газа. При работе с данной моделью широко применяются термодинамические потенциалы, которые в данном частном случае приобретают более простой для расчётов вид.
Подробнее: Термодинамические потенциалы идеального газа
Метод локализации — метод синтеза систем автоматического управления нелинейными и нестационарными объектами, включающий формирование управления как функции вектора скорости и обеспечивающий локализацию и подавление действия возмущений.
Метод ренормализационной группы (также часто называемый методом ренормгруппы, методом РГ) в квантовой теории поля — итеративный метод перенормировки, в котором переход от областей с меньшей энергией к областям с большей вызван изменением масштаба рассмотрения системы.
Подробнее: Ренормализационная группа
Диссипа́ция энергии (лат. dissipatio «рассеяние») — переход части энергии упорядоченных процессов (кинетической энергии движущегося тела, энергии электрического тока и т. п.) в энергию неупорядоченных процессов, в конечном счёте — в теплоту. Системы, в которых энергия упорядоченного движения с течением времени убывает за счёт диссипации, переходя в другие виды энергии, например в теплоту или излучение, называются диссипативными. Для учёта процессов диссипации энергии в таких системах при определённых...