Связанные понятия
Хлорофи́лл (от греч. χλωρός, «зелёный» и φύλλον, «лист») — зелёный пигмент, окрашивающий хлоропласты растений в зелёный цвет. При его участии происходит фотосинтез. По химическому строению хлорофиллы — магниевые комплексы различных тетрапирролов. Хлорофиллы имеют порфириновое строение и близки гему.
Автотро́фы (др.-греч. αὐτός — сам + τροφή — пища) — организмы, синтезирующие органические вещества из неорганических. Автотрофы составляют первый ярус в пищевой пирамиде (первые звенья пищевых цепей). Именно они являются первичными продуцентами органического вещества в биосфере, обеспечивая пищей гетеротрофов. Следует отметить, что иногда резкой границы между автотрофами и гетеротрофами провести не удаётся. Например, одноклеточная водоросль эвглена зелёная на свету является автотрофом, а в темноте...
Пурпурные бактерии (Purple bacteria) — разнородная группа фотосинтезирующих протеобактерий, обитающих в солёных и пресных водах. Пурпурные бактерии относятся к классам альфа-, бета-, и гамма-протеобактерий.
Хемосинтез — способ автотрофного питания, при котором источником энергии для синтеза органических веществ из CO2 служат реакции окисления неорганических соединений. Подобный вариант получения энергии используется только бактериями или археями. Это явление было открыто в 1889 году русским учёным С. Н. Виноградским. Микроорганизмы, способные к хемосинтезу, Виноградский называл аноргоксиданты. Название хемосинтез ввёл немецкий химик и ботаник Вильгельм Пфеффер в 1897 году.
Цианобакте́рии , или синезелёные во́доросли, или циане́и (лат. Cyanobacteria, от греч. κυανός — сине-зелёный) — отдел крупных грамотрицательных бактерий, способных к фотосинтезу, сопровождающемуся выделением кислорода.
Упоминания в литературе
Фотосинтез – синтез органических веществ из неорганических, идущий с использованием энергии света. Ведущую роль играют светоулавливающие пигменты, в основном хлорофиллы, содержащиеся в пластидах растений – хлоропластах. Процесс складывается из двух фаз: световой, в ходе которой происходит фотолиз воды и выделение О2, в результате чего образуются продукты, необходимые в темновой фазе (АТФ и НАДФ Н), и собственно темновой фазы, где с помощью указанных продуктов СО2 восстанавливается до сахаров. Суммарная реакция фотосинтеза имеет вид:
Особенностью спирулины является сочетание в ее клетках свойств растительных и животных организмов. Спирулина, как и все растения, существует на основе процессов
фотосинтеза (усвоения энергии солнечного света, необходимого для последующих реакций биосинтеза). Спирулина, как и все водоросли, использует при фотосинтезе в качестве доноров электронов молекулы воды, (что и позволяет водорослям жить практически повсюду). В то же время биохимический состав клетки спирулины в определенной мере сходен с составом клеток животных. Именно соединение свойств растительных и животных организмов в клетках микроводоросли является одним из факторов, определяющих высокую биологическую ценность спирулины.
А теперь рассмотрим, как клетка «дышит». Осуществляется клеточное дыхание в митохондриях, «легких» клетки. Процесс этот так и называется – дыхательная цепь, состоит из ряда последовательных окислительно-восстановительных реакций, в которых каскадно, т. е. не одномоментно, выделяется энергия, а от субстрата, углеводов, жиров и белков, остаются углекислый газ и вода. Окисление это происходит при помощи кислорода, который поступает через легкие и переносится гемоглобином. С общебиологической точки зрения биологическое окисление обратно
фотосинтезу : при фотосинтезе расходуется энергия Солнца для образования глюкозы (соединений углерода), а при биологическом окислении путем расщепления глюкозы эта энергия освобождается.
Но есть у цианобактерий еще одно важное свойство: они прямо поглощают атмосферный азот. При нормальном освещении цианобактерии выделяют много кислорода, а азота поглощают мало. Однако стоит повысить интенсивность света, как
фотосинтез подавляется, кислород перестает выделяться, зато азот начинает поглощаться в повышенных дозах. Как это понимать? Тут, может быть, стоит вспомнить, что в условиях бескислородной атмосферы древней Земли предки сине-зеленых подвергались интенсивному облучению солнечной радиацией. Результатом их деятельности того периода послужили, во-первых, накопление связанного азота – источника питания будущих более высокоорганизованных форм живого и, во-вторых, постепенное выделение кислорода в атмосферу и произошедшее из-за этого ослабление интенсивности солнечного света. А цианобактерии, видимо, в любой момент готовы вернуться к прежней жизни в бескислородной среде, той самой, которая была у них в архее.
При помощи одной только РНК, без участия белков, невозможен ни
фотосинтез , ни хемосинтез. Так что организмы РНК-мира нуждались в готовых органических веществах, причем довольно сложных (строительные блоки РНК, нуклеотиды, устроены сложнее, чем аминокислоты, и в аппарате Миллера самопроизвольно не возникают). Более того, энергию для своей жизни и размножения РНК-организмы могут получать только в виде активированных нуклеотидов – например, нуклеотид-трифосфатов, к которым относится АТФ, основной переносчик энергии в современных клетках. Итак, чтобы мир РНК из изящной гипотезы стал хорошо обоснованной теорией, мы должны как-то примирить его с грубой биохимической реальностью. Либо мы должны найти для РНК-организмов «стол и дом» – место обитания, где для них будет надежный источник пищи в виде активированных нуклеотидов. Либо же нам придется дополнить РНК в первых живых системах какими-то другими веществами, при помощи которых РНК-организмы смогут вписаться в окружающую среду, в том числе освоить фото- или хемосинтез. В качестве этих дополнительных веществ мы рассмотрим витамины (мир РНК-коферментов) и некоторые минералы (железосерный мир и цинковый мир).
Связанные понятия (продолжение)
Азотфикса́ция , или азотофиксация, — фиксация молекулярного атмосферного азота, диазотрофия. Процесс восстановления молекулы азота и включения её в состав своей биомассы прокариотными микроорганизмами. Важнейший источник азота в биологическом круговороте. В наземных экосистемах азотфиксаторы локализуются в основном в почве.
Фототрофы (др.-греч. φῶς, φωτός = свет, τροϕή = питание) — это организмы, которые используют свет для получения энергии. Они используют энергию света для поддержания различных метаболических процессов. Существует распространенное заблуждение, что фототрофы должны обязательно фотосинтезировать. Многие, хотя далеко не все, действительно фотосинтезируют: они используют энергию света, чтобы преобразовывать углекислый газ в органический материал, который служит для построения их тела, или в качестве источника...
Гетеротро́фы (др.-греч. ἕτερος — «иной», «различный» и τροφή — «пища») — организмы, которые не способны синтезировать органические вещества из неорганических путём фотосинтеза или хемосинтеза. Для синтеза необходимых для своей жизнедеятельности органических веществ им требуются экзогенные органические вещества, то есть произведённые другими организмами. В процессе пищеварения пищеварительные ферменты расщепляют полимеры органических веществ на мономеры. В сообществах гетеротрофы — это консументы...
Связывание углерода — общее название совокупности процессов, при которых углекислый газ CO2 преобразуется в органические вещества. Такие процессы используют автотрофы, то есть организмы, которые сами вырабатывают необходимые для себя органические вещества. В частности, процесс связывания углерода является составной частью фотосинтеза.
Продуце́нты (от лат. producens — «создающий») — организмы, способные производить органические вещества из неорганических, то есть все автотрофы. Это в основном зелёные растения (синтезируют органические вещества из неорганических в процессе фотосинтеза), однако некоторые виды бактерий-хемотрофов способны на чисто химический синтез органики без солнечного света.
Высшие растения , или наземные растения, или эмбриофиты (лат. Embryophyta, иногда используется латинское наименование Plantae sensu strictissimo — «растения в наиболее узком смысле»), — клада зелёных растений, которым свойственна дифференциация тканей, в отличие от низших растений — водорослей. К высшим растениям относятся мохообразные и сосудистые растения (папоротниковидные, плауновидные, голосеменные и покрытосеменные).
Под эволюцией
фотосинтеза понимают исторический путь происхождения и последующего развития фотосинтеза или последовательное становление и изменение процесса преобразования солнечной энергии в химическую для синтеза сахаров из углекислого газа, с выделением кислорода в качестве побочного продукта.
Анаэробное дыхание — биохимический процесс окисления органических субстратов или молекулярного водорода с использованием в дыхательной ЭТЦ в качестве конечного акцептора электронов вместо O2 других окислителей неорганической или органической природы. Как и в случае аэробного дыхания, выделяющаяся в ходе реакции свободная энергия запасается в виде трансмембранного протонного потенциала, использующегося АТФ-синтазой для синтеза АТФ.
Аэро́бы (от греч. αηρ — воздух и βιοζ — жизнь) — организмы, которые нуждаются в свободном молекулярном кислороде для процессов синтеза энергии, в отличие от анаэробов. К аэробам относятся подавляющее большинство животных, все растения, а также значительная часть микроорганизмов.
Миксотро́фы (от др.-греч. μῖξις — смешение и τροφή — пища, питание) — организмы, способные использовать различные источники углерода и доноры электронов. Миксотрофы могут быть одновременно фототрофами и хемотрофами, литотрофами и органотрофами. Миксотрофами являются представители как прокариот, так и эукариот.Примером организма с миксотрофным получением углерода и энергии является бактерия Paracoccus pantotrophus из семейства Rhodobacteraceae — хемооргано-гетеротроф, также способная существовать...
Хемотро́фы — организмы, получающие энергию в результате хемосинтеза — окислительно-восстановительных реакций, в которых они окисляют химические соединения, богатые энергией (как неорганические — например, молекулярный водород, серу, так и органические — углеводы, жиры, белки, парафины и более простые органические соединения), в отличие от фототрофов, получающих энергию в результате фотосинтеза. Исключением служат «не-редокс» механизмы, когда протонный электрохимический градиент (PMF, proton motive...
Зелёные серобактерии (лат. Chlorobiaceae) — семейство облигатно анаэробных (более строгих, чем пурпурные бактерии, в присутствии O2 не растут) фотолитоавтотрофных грамотрицательных бактерий, использующих сероводород (H2S), водород (H2) и элементарную серу (S0) в качестве доноров электронов. По происхождению они принадлежат к надтипу Bacteroidetes-Chlorobi, однако неоднородны и потому их классифицируют как отдельный тип.
Хлоропла́сты (от греч. χλωρός — «зелёный» и от πλαστός — вылепленный) — зелёные пластиды, которые встречаются в клетках фотосинтезирующих эукариот. С их помощью происходит фотосинтез. Хлоропласты содержат хлорофилл. У зелёных растений являются двумембранными органеллами. Под двойной мембраной имеются тилакоиды (мембранные образования, в которых находится электронтранспортная цепь хлоропластов). Тилакоиды высших растений группируются в граны, которые представляют собой стопки сплюснутых и тесно прижатых...
Круговорот азота — биогеохимический цикл азота. Большая его часть обусловлена действием живых существ. Очень большую роль в круговороте играют почвенные микроорганизмы, обеспечивающие азотистый обмен почвы — круговорот в почве азота, который присутствует там в виде простого вещества (газа — N2) и ионов: нитритов (NO2-), нитратов (NO3-) и аммония (NH4+). Концентрации этих ионов отражают состояние почвенных сообществ, поскольку на эти показатели влияет состояние биоты (растений, микрофлоры), состояние...
Фикобили́ны (от греч. φύκος — водоросли и лат. bilis — желчь) — тетрапиррольные пигменты (билины) красных водорослей, криптофит и цианобактерий (синезелёных водорослей). Фикобилины являются хромофорной группой фикобилипротеинов — кислых водорастворимых глобулярных хромопротеинов светособирающего комплекса водорослей. Отдельными молекулами фикобилины, как правило, не представлены, а образуют комплексы с белками — фикобилипротеиды (хромопротеиды).
Фотофосфорили́рование — процесс синтеза АТФ из АДФ за счёт энергии света. Как и в случае окислительного фосфорилирования, энергия света расходуется на создание протонного градиента на мембране тилакоидов или клеточной мембране бактерии, который затем используется АТФ-синтазой. Фотофосфорилирование — очень древняя форма фотосинтеза, которая есть у всех фототрофных эукариот, бактерий и архей. Различают два типа фосфорилирования — циклическое, сопряжённое с циклическим потоком электронов в электрон-транспортной...
Нитрогеназа (КФ 1.18.6.1) — комплекс ферментов (мультифермент), осуществляющий процесс фиксации атмосферного азота. Широко распространён у бактерий и архей, в то время как все эукариоты его лишены.
Тилакоид ы — ограниченные мембраной компартменты внутри хлоропластов и цианобактерий. В тилакоидах происходят светозависимые реакции фотосинтеза. Слово «тилакоид» происходит от греческого слова thylakos, означающего «мешочек». Тилакоиды состоят из мембраны, окружающей просвет тилакоида. Тилакоиды хлоропластов часто имеют структуру, напоминающую стопку дисков. Эти стопки называют гранами (от лат. Granum — стопка монет). Граны соединены межграновыми или строматическими тилакоидами (ламеллами) в единое...
Нитрификация — микробиологический процесс окисления аммиака до азотистой кислоты или её самой далее до азотной кислоты, что связано либо с получением энергии (хемосинтез, автотрофная нитрификация), либо с защитой от активных форм кислорода, образующихся при разложении пероксида водорода (гетеротрофная нитрификация).
Хлорелла (от греч. χλωρός, «зелёный» и лат. ella — уменьшительный суффикс) — род одноклеточных зелёных водорослей, относимый к отделу Chlorophyta. Имеет сферическую форму, от 2 до 10 мкм в диаметре, не имеют жгутиков. Хлоропласты хлореллы содержат хлорофилл-а и хлорофилл-б. Для процесса фотосинтеза хлорелле требуются только вода, диоксид углерода, свет, а также небольшое количество минералов для размножения.
Восстановительный пентозофосфатный цикл , или цикл Кальвина, — серия биохимических реакций, осуществляемая при фотосинтезе растениями (в строме хлоропластов), цианобактериями, прохлорофитами и пурпурными бактериями, а также многими бактериями-хемосинтетиками, является наиболее распространённым из механизмов автотрофной фиксации CO2. Цикл Кальвина назван в честь американского биохимика Мелвина Кальвина (1911—1997). Часто используются альтернативные названия, указывающие на роль коллег Кальвина в открытии...
Анаммо́кс (сокр. от англ. anaerobic ammonium oxidation — анаэробное окисление аммония) — один из ключевых микробных процессов в круговороте азота. Бактерии, осуществляющие этот процесс, были открыты в 1999 году, и в своё время описание этого процесса стало большим сюрпризом для научного сообщества. Уравнение процесса...
Денитрификация (восстановление нитрата) — сумма микробиологических процессов восстановления нитратов до нитритов и далее до газообразных оксидов и молекулярного азота. В результате их азот возвращается в атмосферу и становится недоступным большинству организмов. Осуществляется только прокариотами (причём как бактериями, так и археями) в анаэробных условиях и связана с получением ими энергии.
Пласти́ды (от др.-греч. πλαστός «вылепленный») — полуавтономные органеллы высших растений, водорослей и некоторых фотосинтезирующих простейших. Пластиды имеют от двух до четырёх мембран, собственный геном и белоксинтезирующий аппарат.
Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды. Высвобожденная энергия запасается в химических связях макроэргических соединений (АТФ, которых в результате процесса образуется 38 и др.) и может быть использована по мере необходимости. Входит в группу процессов катаболизма. О физиологических процессах транспортировки к клеткам многоклеточных...
Серобактерии (Тиобактерии) — весьма разнородная группа прокариотов, окисляющих восстановленные соединения серы.
Бакте́рии (лат. Bacteria) — домен прокариотических микроорганизмов. Бактерии обычно достигают нескольких микрометров в длину, их клетки могут иметь разнообразную форму: от шарообразной до палочковидной и спиралевидной. Бактерии — одна из первых форм жизни на Земле и встречаются почти во всех земных местообитаниях. Они населяют почву, пресные и морские водоёмы, кислые горячие источники, радиоактивные отходы и глубинные слои земной коры. Бактерии часто являются симбионтами и паразитами растений и животных...
Органические соединения, органические вещества — класс химических соединений, объединяющий почти все химические соединения, в состав которых входит углерод (за исключением карбидов, угольной кислоты, карбонатов, оксидов углерода и цианидов). Органические соединения редки в земной коре, но обладают наибольшей важностью, потому что являются основой всех известных форм жизни. Основные дистилляты нефти считаются строительными блоками органических соединений. Органические соединения, кроме углерода (C...
Азотоба́ктер (лат. Azotobacter) — род бактерий, живущих в почве и способных в результате процесса азотфиксации переводить газообразный азот в растворимую форму, доступную для усваивания растениями.
Метаногенез , биосинтез метана — процесс образования метана анаэробными археями, сопряжённый с получением ими энергии. Существует три типа метаногенеза...
Зелёные несе́рные бакте́рии , или зелёные ни́тчатые серобакте́рии, — филогенетически однородная группа факультативно анаэробных фотогетеротрофных бактерий, осуществляющих аноксигенный фотосинтез, использующих H2S, H2, сахара, аминокислоты и органические кислоты в качестве доноров электронов. В отличие от зелёных серобактерий, зелёные несерные бактерии при окислении сероводорода откладывают элементарную серу вне клеток, за что и получили своё название. Следует отметить, что зелёные несерные бактерии...
Нефотохимическое тушение — механизм защиты фотосинтетического аппарата от света высокой интенсивности, используемый растениями и водорослями. Суть процесса заключается в поглощении избыточной энергии (тушении) синглетного возбужденного хлорофилла молекулой-акцептором с последующим переходом этой молекулы в основное энергетическое состояние при помощи усиленной внутренней конверсии. Благодаря внутренней конверсии избыточная энергия возбуждения рассеивается в виде тепла, то есть расходуется на молекулярные...
Митохо́ндрия (от греч. μίτος — нить и χόνδρος — зёрнышко, крупинка) — двумембранная сферическая или эллипсоидная органелла диаметром обычно около 1-0,5 микрометра. Характерна для большинства эукариотических клеток, как автотрофов (фотосинтезирующие растения), так и гетеротрофов (грибы, животные). Энергетическая станция клетки; основная функция — окисление органических соединений и использование освобождающейся при их распаде энергии для генерации электрического потенциала, синтеза АТФ и термогенеза...
Кра́сные во́доросли , или багря́нки (лат. Rhodóphyta), — отдел водорослей, обитатели прежде всего морских водоёмов, пресноводных представителей известно немного. Обычно это довольно крупные растения, но встречаются и микроскопические. Среди красных водорослей имеются одноклеточные (крайне редко), нитчатые и псевдопаренхимные формы; истинно паренхимные формы отсутствуют. Ископаемые остатки свидетельствуют, что это очень древняя группа растений. Красные водоросли неоднократно переходили к паразитированию...
Фикобилисо́мы — светособирающие органеллы для фотосистемы II у цианобактерий, красных водорослей и глаукофитов. Стандартные фикобилисомы отсутствуют у криптофитовых и тех представителей прохлорофитовых, у которых имеются фикобилипротеины. У криптофитовых фикобилипротеины находятся во внутритилакоидном пространстве.
Фотодыхание (гликолатный путь, С2-фотосинтез) — стимулируемое светом выделение углекислого газа и поглощение кислорода у растений преимущественно с С3-типом фотосинтеза. Также под фотодыханием понимают биохимический путь, связанный с регенерацией одной молекулы 3-фосфоглицериновой кислоты (С3) из двух молекул гликолевой кислоты (С2) и лежащий в основе вышеописанного газообмена. Наличие биохимического механизма фотодыхания обусловлено значительной оксигеназной активностью РуБисКО, ключевого фермента...
Бактериохлорофи́ллы — гетерогенная группа фотосинтетических тетрапиррольных пигментов, которые синтезируются различными аноксигенными фототрофными бактериями, осуществляющими фотосинтез без выделения кислорода.
Дыхательная цепь переноса электронов , также электрон-транспортная цепь (сокр. ЭТЦ, англ. ETC, Electron transport chain) — система трансмембранных белков и переносчиков электронов, необходимых для поддержания энергетического баланса. ЭТЦ поддерживает баланс за счёт переноса электронов и протонов из НАД∙Н и ФАДН2 в акцептор электронов. В случае аэробного дыхания акцептором может быть молекулярный кислород (О2). В случае анаэробного дыхания акцептором могут быть NO3−, NO2−, Fe3+, фумарат, диметилсульфоксид...
Вспомогательные пигменты — светопоглощающие соединения фотосинтезирующих организмов, которые работают в сочетании с хлорофиллом а, выполняя светособирающую или светозащитную функции. К ним относятся различные формы хлорофилла, например хлорофилл b в зеленых водорослях и светособирающих антеннах высших растений или хлорофиллы с или d у других водорослей. Кроме того есть много других вспомогательных пигментов таких как каротиноиды или фикобилипротеины, которые также поглощают свет и передают его энергию...
Аноксигенный фотосинтез (англ. anoxygenic «бескислородный») — вариант фотосинтеза (процесса образования органических веществ на свету), при котором, в отличие от оксигенного фотосинтеза, не происходит образования молекулярного кислорода. Для аноксигенного фотосинтеза требуется наличие во внешней среде восстановленных субстратов, например, сероводорода, серы, тиосульфата, органических соединений или молекулярного водорода. Возможность осуществления аноксигенного фотосинтеза доказана К. ван Нилем...
Биомолекулы — это органические вещества, которые синтезируются живыми организмами. В состав биомолекул включают белки, полисахариды, нуклеиновые кислоты, а также более мелкие компоненты обмена веществ. Биомолекулы состоят из атомов углерода, водорода, азота, кислорода, а также фосфора и серы. Другие атомы входят в состав биологически значимых веществ значительно реже.
Хромофо́ры (др.-греч. χρῶμα — цвет и φέρω — несу) — ненасыщенные группы атомов, обуславливающие цвет химического соединения. В то же время поглощающие электромагнитное излучение независимо от наличия окраски. Так, карбонильная группа C=O является хромофором, поглощающим в области 280 нм, в то же время кетоны, содержащие С=O – бесцветные вещества. Хромофорная теория возникновения окраски была предложена в 1878 г. немецким учёным Виттом. К хромофорам относят азогруппу —N=N—, нитрогруппу —NO2, нитрозогруппу...
Хламидомона́да (лат. Chlamydómonas) — род одноклеточных зелёных водорослей из семейства Хламидомонадовые (Chlamydomonadaceae).
Архе́и (лат. Archaea от др.-греч. ἀρχαῖος «извечный, древний, первозданный, старый») — домен живых организмов (по трёхдоменной системе Карла Вёзе наряду с бактериями и эукариотами). Археи представляют собой одноклеточные микроорганизмы, не имеющие ядра, а также каких-либо мембранных органелл.
Бактериопланктон — бактериальный компонент планктона. Название происходит от древнегреческого слова πλανκτος (planktos), означающего «странник» или «бродяга», и латинского термина bacterium. Бактериопланктон встречается как в морской так и в пресной воде. По размерам примыкает к нанопланктону.
Упоминания в литературе (продолжение)
И все равно организмы потребляют энергии на порядок больше, чем могут получить все континенты, горы и прочие геологические образования вместе взятые. Именно поэтому биосфера может себе позволить атмосферу, химически неравновесную с горными породами: это неравновесие и есть основа биохимического выветривания. [Названный выше уровень потребления энергии биосферой рассчитан исходя из данных по годовой фиксации углерода при
фотосинтезе – 9 × 1015 моль; энергии, необходимой для связывания одного моля углерода с органической молекулой (пентоза), – 477 000 Дж; и площади планеты – 5,1 × 1014 м2, умноженной на 3,15 × 107 с в году.]
В настоящее время нет никаких сомнений в определяющем влиянии воды на формирование климата, погоды, физической и химической среды Земли, а существование живых организмов на нашей планете просто невозможно без этой жидкости. Содержание H2O в них колеблется от 60 до 99 % массы тела. Данный факт позволяет ученым утверждать, что всякий живой организм на Земле – это одушевленная или одухотворенная вода. В организме человека она регулирует температуру тела, обмен веществ и выведение образовавшихся в результате этого продуктов. Вода в свободном состоянии содержится в жидких средах нашего организма – крови, лимфе, пищеварительных соках и межклеточном пространстве. В тканях она присутствует в связанном виде, поэтому при повреждении или рассечении органа не выводится. Она может связываться с белком и другими органическими соединениями. Молекулы воды, содержащиеся внутри клеток, легко включаются в общий круговорот воды в организме. Она является основной средой организма человека, в которой осуществляются все виды обмена веществ и протекают ферментативные биохимические реакции. В процессе
фотосинтеза вода и углекислый газ, синтезируя образование органических веществ, становятся основой создания живой материи на нашей планете.
Управляемый, в основном метаболический ацидоз, в этих условиях способствует фиксации растворенного в крови углекислого газа клетками тканей по принципу
фотосинтеза ; при необычном, эндогенном режиме питания «растормаживаются» древние реакции, свойственные некоторым млекопитающим, способным усваивать углекислый газ из воздуха, подобно растениям, обеспечивая тем самым синтез белковых и других органических соединений [Гулый М. Ф., Мельничук Д. А., 1978]. В состоянии стресса синтез нуклеиновых кислот (наследственного аппарата клеток), аминокислот и других биологически активных веществ, необходимых для продолжения жизнедеятельности, находится в прямопропорциональной зависимости от процесса фиксации углекислого газа клетками. Основным «сырьем» для этого синтеза являются, кроме углекислоты, кетоновые тела, а также балластные белки, которые образуются в процессе жизнедеятельности организма как промежуточные продукты обмена и аутолиза нежизнеспособных тканей. В этих условиях стресса, отсутствия экзогенного питания и нарастающего ацидоза «растормаживаются» и другие древние функции аварийного, саногенетического плана, сформировавшиеся в фило- и онтогенезе: например, макрофаги, кроме свойственной им в обычных условиях жизнедеятельности и экзогенного питания защитной функции фагоцитоза чужеродного антигенного материала, проявляют «пластическую» функцию. Они перерабатывают своими лизосомальными ферментами «балластные» белки в иные, пригодные в условиях эндогенного питания для структурных целей.
Академик К. А. Тимирязев в 1875 году определил количество фотосинтетической энергии радиации Солнца (8 молей фотонов на частоте красной и сине-зеленой области спектра) равно 16,8 106 Дж. Эта энергия необходима для связывания одного моля СО2 и преобразования его в органику, количество которой эквивалентно 4,8 105 Дж. Отсюда максимальный теоретический КПД
фотосинтеза равен 0,3. Эта величина не учитывает расход энергии на образование меж молекулярных связей, на образование более сложных структур, например клеток, на дыхание, испарение и т. п.
Кислород по биологической роли – самая важная составная часть воздуха. В природе постоянно происходит потребление кислорода при дыхании человека и животных. Расходуется кислород на процессы окисления и горения. Несмотря на значительный расход кислорода, его содержание в воздухе практически не изменяется, так как в растительном мире постоянно идет процесс ассимиляции углекислого газа и выделение кислорода. В результате процессов
фотосинтеза в атмосферу поступает около 5 X 1014 т кислорода в год, что примерно соответствует его потреблению. Под действием солнечных лучей молекулы воды распадаются также с образованием кислорода.
В 1862 г. немецкий ботаник Саке открыл, что
фотосинтез становится возможным благодаря присутствию в листе растения крошечного зерна – хлорофилла – зеленого пигмента листа. Частички хлорофилла размером 0,003 и 0,001 мм являются инструментами и аппаратами той лаборатории, в которой происходит превращение солнечной энергии световых лучей в молекулы углевода.
Плазматическая мембрана прокариотических клеток отличается тем, что содержит в качестве интегральных белков переносчики электронов и ферменты дыхательной цепи и образует разного рода выпячивания. Некоторые выпячивания осуществляют дыхание, другие –
фотосинтез и дыхание. Мезосомы бактерий представляют собой пластинчатые, трубчатые или везикулярные тельца, лежащие в карманах мембраны. Внутреннее пространство мезосом частично сообщается с внеклеточной средой. Мезосомы образуются в результате сложного складывания и слияния впяченных участков мембраны. Их функция неизвестна. Сходные структуры описаны у синезеленых водорослей и в клетках грибов (хотя последние относятся к эукариотам).
Однако Н2О2 вовсе не является чуждым для организма веществом. Водород содержится в свежих фруктах и овощах, куда попадает вместе с дождем или в процессе
фотосинтеза . Таким образом, включение в рацион растительных продуктов гарантирует, что вместе с ними мы получим и перекись водорода. Присутствует водород и в материнском молоке – оно содержит приличный его объем. Много естественных соединений водорода находится и в знаменитом французском источнике – Лурде, славящемся своими целебными свойствами.
Растения непрерывно поглощают из почвы минеральные элементы, а гигантское хранилище энергии – солнце – питает их светом. Роль растений в жизни нас и нашей планеты очень велика. Растения – колоссальные живые фабрики
фотосинтеза – поглощают смертельный для человека углекислый газ и вырабатывают миллиарды кубометров кислорода, являются основным источником органической материи. Они могут дать человеку практически все, что ему нужно для плодотворной и счастливой жизни, а без этого мы не смогли бы существовать на планете.