Связанные понятия
Неориентированный
граф G двойственно хордален, если гиперграф его максимальных клик является гипердеревом. Имя происходит из факта, что граф хордален тогда и только тогда, когда гиперграф его максимальных клик двойственен гипердереву. Первоначально эти графы были определены по максимальному соседству и имеют ряд различных описаний. В отличие от хордальных графов свойство двойственной хордальности не наследуется, то есть, порождённые подграфы двойственного хордального графа не обязательно двойственно...
Говорят, что семейство графов имеет ограниченное расширение, если все его миноры ограниченной глубины являются редкими графами. Много естественных семейств редких графов имеют ограниченное расширение. Близкое, но более сильное свойство, полиномиальное расширение, эквивалентно существованию теорем разбиения для этих семейств. Семейства с этими свойствами имеют эффективные алгоритмы для задач, в которые входят задача поиска изоморфного подграфа и проверка моделей для теории первого порядка для графов...
Подробнее: Ограниченное расширение графа
Преобразование треугольник-звезда — способ эквивалентного преобразования пассивного участка линейной электрической цепи — «треугольника» (соединения трёх ветвей, которое имеет вид треугольника, сторонами которого являются ветви, а вершинами — узлы), в «звезду» (соединение трёх ветвей, которые имеют один общий узел). Эквивалентность «треугольника» и «звезды» обусловлена тем, что при одинаковых напряжениях между одноименными выводами электрической цепи токи, которые втекают в одноименные выводы, а...
Направленное множество в математике — непустое множество A с заданным на нем рефлексивным транзитивным отношением ≤ (то есть предпорядком), обладающее дополнительным свойством: у любой пары элементов из A есть верхняя грань в A.
Граф дружеских отношений (или граф датской мельницы, или n-лопастной вентилятор) Fn — это планарный неориентированный граф с 2n+1 вершинами и 3n рёбрами.
Говорят, что ориентированный
граф апериодичен, если нет целого числа k > 1, делящего длину любого цикла графа. Эквивалентно, граф апериодичен, если наибольший общий делитель длин его циклов равен единице. Этот наибольший общий делитель для графа G называется периодом графа G.
Почти многоугольник — это геометрия инцидентности, предложенная Эрнестом Е. Шультом и Артуром Янушкой в 1980. Шульт и Янушка показали связь между так называемыми тетраэдрально замкнутыми системами прямых в евклидовых пространствах и классом геометрий точка/прямая, которые они назвали почти многоугольниками. Эти структуры обобщают нотацию обобщённых многоугольников, поскольку любой обобщённый 2n-угольник является почти 2n-угольником определённого вида. Почти многоугольники интенсивно изучались, а...
Теорема Понтрягина — Куратовского, или теорема Куратовского, — теорема в теории графов, дающая необходимое и достаточное условие планарности графа.
В теории графов двусвязный граф — это связный и неделимый граф, в том смысле, что удаление любой вершины не приведёт к потере связности. Теорема Уитни утверждает, в частности, что граф двусвязен тогда и только тогда, когда между любыми двумя его вершинами есть минимум два реберно непересекающихся пути. Таким образом, двусвязный граф не имеет шарниров.
В теории категорий, представимый функтор — функтор специального типа из произвольной категории в категорию множеств. В некотором смысле, такие функторы задают представление категории в терминах множеств и функций.
В теории графов свободный от t-биклик граф — это граф, в котором нет полных двудольных графов с 2t вершинами Kt,t в качестве подграфов. Семейство графов является свободным от биклик, если существует число t, такое, что все графы в семействе свободны от t-биклик. Семейства свободных от бициклов графов образуют одно из наиболее общих типов семейств разреженных графов. Они возникают в задачах инцидентности в комбинаторной геометрии, а также используются в теории параметрической сложности.
В теории графов ежевикой для неориентированного графа G называется семейство связных подграфов графа G, которые касаются друг друга: для любой пары подграфов, не имеющих общих вершин, должно существовать ребро, конечные вершины которого лежат в этих двух подграфах. Порядок ежевики — это наименьший размер множества вершин G, которое имеет непустое пересечение с каждым подграфом ежевики. Ежевики используются для описания древесной ширины графа G.
Подробнее: Ежевика (теория графов)
Флаг в геометрии многогранников — последовательность граней (различной размерности) абстрактного многогранника, в которой каждая предыдущая грань содержится в последующей и последовательность содержит ровно по одной грани каждой размерности.
Дискре́тное простра́нство в общей топологии и смежных областях математики — это пространство, все точки которого изолированы друг от друга в некотором смысле.
Гипотеза Шейнермана , теперь доказанная теорема, утверждает, что любой планарный граф является графом пересечений набора отрезков на плоскости. Эту гипотезу сформулировал Эдвард Шейнерман в своей кандидатской диссертации, следуя более раннему результату, что любой планарный граф можно представить как граф пересечений простых кривых на плоскости.Теорему доказали Чалопин и Гонсалвис.
Вложение Сегре используется в проективной геометрии для того, чтобы рассматривать прямое произведение двух проективных пространств как проективное многообразие. Названо в честь итальянского математика Беньямино Сегре.
Бабочка имеет диаметр 2 и обхват 3, радиус 1, хроматическое число 3, хроматический индекс 4 и является как эйлеровым, так и графом единичных расстояний. Граф является вершинно 1-связным графом и рёберно 2-связным.
В теории графов графом единичных кругов называется граф пересечений семейства единичных кругов на евклидовой плоскости. То есть мы образуем вершину для каждого круга и соединяем две вершины ребром, если соответствующие круги пересекаются.
Подробнее: Граф единичных кругов
Самодополнительный граф — это граф, изоморфный своему дополнению. Простейшие нетривиальные самодополнительные графы — это путь, состоящий из 4 вершин и цикл из 5 вершин.
Фуксова модель — это представление гиперболической римановой поверхности R как факторповерхности верхней полуплоскости H по фуксовой группе. Любая гиперболическая риманова поверхность позволяет такое представление. Концепция названа именем Лазаря Фукса.
Перечисление графов — категория задач перечислительной комбинаторики, в которых нужно пересчитать неориентированные или ориентированные графы определённых типов, как правило, в виде функции от числа вершин графа. Эти задачи могут быть решены либо точно (как задача алгебраического перечисления) или асимптотически.
Тотальная раскраска возникает естественным путём, поскольку она является простым смешением вершинной и рёберной раскрасок.
Лексикографический поиск в ширину (англ. lexicographic breadth-first search, LBFS or Lex-BFS) — алгоритм упорядочивания вершин графа. Алгоритм отличается от алгоритма поиска в ширину и дает более упорядоченную последовательность вершин графа.
Блоковый многогранник — это (многомерный) многогранник, образованный из симплекса путём многократного приклеивания другого симплекса к одной из его фасет.
В математике константой
Чигера (также числом Чигера или изопериметрическим числом) графа называется числовая характеристика графа, отражающая, есть ли у графа «узкое место» или нет. Константа Чигера как способ измерения наличия «узкого места» представляет интерес во многих областях, например, для создания сильно связанных компьютерных сетей, для тасования карт и в топологии малых размерностей (в частности, при изучении гиперболических 3-мерных многообразий). Названа в честь математика Джефа Чигера...
Область главных идеалов — это область целостности, в которой любой идеал является главным. Более общее понятие — кольцо главных идеалов, от которого не требуется целостности (однако некоторые авторы, например Бурбаки, ссылаются на кольцо главных идеалов как на целостное кольцо).
Вну́тренность множества в общей топологии — это совокупность всех внутренних точек. Обычно обозначается Int, вероятно, от англ. Interior. Иногда внутренность множества называют ядром.
Максимальным идеалом коммутативного кольца называется всякий собственный идеал кольца, не содержащийся ни в каком другом собственном идеале.
Подробнее: Максимальный идеал
Срединный граф — граф, представляющий рёбра смежности внутри граней заданного планарного графа.
Связное доминирующее множество и остовное дерево с максимальной листвой являются двумя тесно связанными структурами, определёнными на неориентированном графе.
Для ориентированного графа G термины converse (обратный), transpose (транспонированный) или reverse (противоположный) используются для обозначения другого ориентированного графа с тем же набором вершинам и с теми же дугами, но ориентация дуг этого графа противоположна ориентации дуг графа G. То есть, если граф G содержит дугу (u,v), то обратный/транспонированный/противоположный граф графу G содержит дугу (v,u) и наоборот.
Подробнее: Транспонированный граф
В теории графов полная раскраска — это противоположность гармонической раскраске в том смысле, что это раскраска вершин, в которой каждая пара цветов встречается по меньшей мере на одной паре смежных вершин. Эквивалентно, полная раскраска — это минимальная раскраска, в том смысле, что её нельзя преобразовать в правильную раскраску с меньшим числом цветов путём слияния двух цветов. Ахроматическое число ψ(G) графа G — это максимальное число цветов среди всех полных раскрасок графа G.
Говорят, что частичный
порядок или линейный порядок < на множестве X плотный, если для всех x и y из X, для которых выполняется x < y, существует элемент z в X, такой что x < z < y.
Теоре́ма Лебе́га о мажори́руемой сходи́мости в функциональном анализе, теории вероятностей и смежных дисциплинах — это теорема, утверждающая, что если сходящаяся почти всюду последовательность измеримых функций может быть ограничена по модулю сверху интегрируемой функцией, то все члены последовательности, а также предельная функция тоже интегрируемы. Более того, интеграл последовательности сходится к интегралу её предела.
Интервальная размерность графа — это минимальная размерность, в которой заданный граф может быть представлен в виде графа пересечений гиперпрямоугольников (то есть многомерных прямоугольных параллелепипедов) с параллельными осям рёбрами. То есть должно существовать один-к-одному соответствие между вершинами графа и множеством гиперпрямоугольников, таких, что прямоугольники пересекаются тогда и только тогда, когда существует ребро, соединяющее соответствующие вершины.
Теорема об обратной функции даёт достаточные условия для существования обратной функции в окрестности точки через производные от самой функции.
Веер Кнастера — Куратовского — пример такого связного подмножества плоскости, удаление из которого одной точки делает его вполне несвязным.
Лемма о вложенных отрезках , или принцип вложенных отрезков Коши — Кантора, или принцип непрерывности Кантора — фундаментальное утверждение в математическом анализе, связанное с полнотой поля вещественных чисел.
Полупростые модули (вполне приводимые модули) — общеалгебраические модули, которые можно легко восстановить по их частям. Кольцо, являющееся полупростым модулем над самим собой, называется артиновым полупростым кольцом. Важный пример полупростого кольца — групповое кольцо конечной группы над полем характеристики ноль. Структура полупростых колец описывается теоремой Веддербёрна — Артина: все такие кольца являются прямыми произведениями колец матриц.
Подробнее: Полупростой модуль
Синглетон — множество с единственным элементом. Например, множество {0} является синглетоном.
Алгори́тм Ка́ргера (англ. Karger's algorithm) — в информатике и теории графов является вероятностным алгоритмом, позволяющим найти минимальный разрез связного графа. Алгоритм изобретен Девидом Каргером и опубликован в 1993 году.