Собственное ускорение

В теория относительности собственное ускорение — физическое ускорение (то есть измеримое ускорение, например помощью акселерометра), испытываемое объектом. Таким образом, это ускорение относительно свободного падения или инерциального наблюдателя, который на мгновение находится в состоянии покоя относительно измеряемого объекта. Гравитация не вызывает собственного ускорения, так как гравитация воздействует на инерциального наблюдателя таким образом, что собственное ускорение не фиксируется. Следствием является то, что все инерционные наблюдатели всегда имеют нулевое собственное ускорение.

Собственное ускорение контрастирует с ускорением, которое зависит от выбора системы координат и, следовательно, от выбора наблюдателя.

В стандартных инерциальных координатах специальной теории относительности для однонаправленного движения собственным ускорением является скорость изменения собственной скорости относительно координатного времени.

В инерциальной системе, в которой объект мгновенно находится в состоянии покоя, собственный 3-вектор ускорения, объединенный с нулевой временной компонентой, дает 4-ускорение объекта, что делает величину собственного ускорения лоренц-инвариантной. Таким образом, концепция полезна в следующих случаях: (i) с ускоренными системами координат, (ii) на релятивистских скоростях и (iii) в искривленном пространстве-времени.

В ускоряющей ракете после запуска или даже в ракете, стоящей на старте, собственное ускорение — это ускорение, ощущаемое обитателями, и которое описывается как перегрузка (что не является силой, а является именно ускорением, см. эту статью для более подробного обсуждения собственного ускорения), производимой только транспортными средствами. «Ускорение гравитации» («сила тяжести») никогда не делает вклад в собственное ускорение ни при каких обстоятельствах, а значит собственное ускорение, наблюдаемое наблюдателями, стоящими на земле, обусловлено механической силой из земли, а не из-за «силы» или «ускорения» силы тяжести. Если убрать землю и позволить наблюдателю свободно падать, наблюдатель испытает координатное ускорение, но не будет собственного ускорения и, следовательно, не будет перегрузки. Обычно объекты в таком падении или вообще при любом баллистическом пути (также называемом инерциальным движением), в том числе объекты на орбите, не испытывают собственного ускорения (пренебрегая небольшими приливными ускорениями для инерциальных путей в гравитационных полях). Это состояние также известно как «невесомость» («ноль-g») или «свободное падение».

Собственное ускорение сводится к координатному в инерциальной системе координат в плоском пространстве-времени (то есть при отсутствии силы тяжести), при условии, что величина собственной скорости объекта (импульс на единицу массы) намного меньше скорость света c. Только в таких ситуациях координатное ускорение полностью ощущается как перегрузка (то есть собственное ускорение, также определяемое как создающее измеримый вес).

В ситуациях, когда гравитация отсутствует, но выбранная система координат не является инерциальной, а ускоряется с наблюдателем (например, ускоренной системой отсчета ускоряющей ракеты или рамкой, закрепленной на объектах в центрифуге), то перегрузки и соответствующие собственные ускорения, наблюдаемые наблюдателями в этих системах координат, вызваны механическими силами, которые сопротивляются их весам в таких системах. Этот вес, в свою очередь, создается силами инерции, которые появляются во всех таких ускоренных системах координат, подобно весу, создаваемому «силой гравитации» для объектов, зафиксированных в пространстве относительно гравитирующего тела (как на поверхности Земли).

Суммарная (механическая) сила, которая рассчитывается, чтобы вызвать собственное ускорение покоящейся массы в системе координат, которая имеет собственное ускорение, по закону Ньютона F = m a, называется собственной силой. Как видно выше, собственная сила равна силе противодействия, которая измеряется как «рабочий вес» объекта (то есть его вес, измеренный устройством, подобным пружинным весам, в вакууме, в системе координат объекта). Таким образом, собственная сила объекта всегда численно равна и противоположна по направлению измеренному весу.

Источник: Википедия

а б в г д е ё ж з и й к л м н о п р с т у ф х ц ч ш щ э ю я