Связанные понятия
Преде́льная то́чка множества в общей топологии — это такая точка, любая проколотая окрестность которой пересекается с этим множеством.
Характеристика (кольца или поля) — числовая величина, используемая в общей алгебре для описания некоторых свойств этих...
Бордизм , также бордантность — термин топологии, употребляющийся самостоятельно или в составе стандартных...
Группа классов идеалов дедекиндова кольца — это, грубо говоря, группа, позволяющая сказать, насколько сильно в данном кольце нарушается свойство факториальности. Эта группа тривиальна тогда и только тогда, когда дедекиндово кольцо является факториальным. Свойства дедекиндова кольца, касающиеся умножения его элементов, тесно связаны с устройством этой группы.
Одноро́дный многочле́н — многочлен, все одночлены которого имеют одинаковую полную степень. Любая алгебраическая форма является однородным многочленом. Квадратичная форма задается однородным многочленом второй степени, бинарная форма - однородным многочленом любой степени от двух переменных.
Определённый интеграл — аддитивный монотонный функционал, заданный на множестве пар, первая компонента которых есть интегрируемая функция или функционал, а вторая — область в множестве задания этой функции (функционала).
Упорядоченное поле — алгебраическое поле, для всех элементов которого определён линейный порядок, согласованный с операциями поля. Наиболее практически важными примерами являются поля рациональных и вещественных чисел.
Простая группа — группа, не имеющая нормальных подгрупп, отличных от всей группы и единичной подгруппы.
Точное нахождение первообразной (или интеграла) произвольных функций — процедура более сложная, чем «дифференцирование», то есть нахождение производной. Зачастую, выразить интеграл в элементарных функциях невозможно.
Подробнее: Методы интегрирования
В математике свободная абелева группа (свободный Z-модуль) — это абелева группа, имеющая базис, то есть такое подмножество элементов группы, что для любого её элемента существует единственное его представление в виде линейной комбинации базисных элементов с целыми коэффициентами, из которых только конечное число являются ненулевыми. Элементы свободной абелевой группы с базисом B называют также формальными суммами над B. Свободные абелевы группы и формальные суммы используются в алгебраической топологии...
Алгебраическая комбинаторика — это область математики, использующая методы общей алгебры, в особенности теории групп и теории представлений, в различных комбинаторных контекстах и, наоборот, применяющая комбинаторные техники к задачам в алгебре.
Проекти́вный мо́дуль — одно из основных понятий гомологической алгебры. С точки зрения теории категорий, проективные модули являются частным случаем проективных объектов.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Теоремы об изоморфизме в алгебре — ряд теорем, связывающих понятия фактора, гомоморфизма и вложенного объекта. Утверждением теорем является изоморфизм некоторой пары групп, колец, модулей, линейных пространств, алгебр Ли или прочих алгебраических структур (в зависимости от области применения). Обычно насчитывают три теоремы об изоморфизме, называемые Первой (также основная теорема о гомоморфизме), Второй и Третьей. Хотя подобные теоремы достаточно легко следуют из определения фактора и честь их открытия...
Функциональное уравнение — уравнение, выражающее связь между значением функции в одной точке с её значениями в других точках. Многие свойства функций можно определить, исследуя функциональные уравнения, которым эти функции удовлетворяют. Термин «функциональное уравнение» обычно используется для уравнений, несводимых простыми способами к алгебраическим уравнениям. Эта несводимость чаще всего обусловлена тем, что аргументами неизвестной функции в уравнении являются не сами независимые переменные, а...
Систе́ма корне́й (корнева́я систе́ма) в математике — конфигурация векторов в евклидовом пространстве, удовлетворяющая определённым геометрическим свойствам.
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Локальные кольца — кольца, которые относительно просты и позволяют описывать «локальное поведение» функций на алгебраическом многообразии или обычном многообразии. Раздел коммутативной алгебры, изучающий локальные кольца и модули над ними, называется локальной алгеброй.
Подробнее: Локальное кольцо
Алгебра Хопфа — ассоциативная алгебра над полем, имеющая единицу, и являющаяся также коассоциативной коалгеброй с коединицей и, таким образом, биалгеброй c антигомоморфизмом специального вида. Названа в честь Х. Хопфа.
Целая функция — функция, регулярная во всей комплексной плоскости. Типичным примером целой функции может служить многочлен или экспонента, а также суммы, произведения и суперпозиции этих функций. Ряд Тейлора целой функции сходится во всей плоскости комплексного переменного. Логарифм, квадратный корень не являются целыми функциями.
Асимптотическое разложение функции f(x) — формальный функциональный ряд, такой, что сумма произвольного конечного числа членов этого ряда приближает (аппроксимирует) функцию f(x) в окрестности некоторой (возможно, бесконечно удалённой) её предельной точки. Понятие асимптотического разложения функции и асимптотического ряда были введены Анри Пуанкаре при разрешении задач небесной механики. Отдельные случаи асимптотического разложения были открыты и применялись ещё в XVIII в. Асимптотические разложения...
Произведение топологических пространств — это топологическое пространство, полученное, как множество, декартовым произведением исходных топологических пространств, и снабжённое естественной топологией, называемой топологией произведения или тихоновской топологией. Слово «естественная» здесь употребляется в смысле теории категорий и означает, что эта топология удовлетворяет некоторому универсальному свойству.
Обра́тный элеме́нт — термин в общей алгебре, обобщающий понятия обратного числа (для умножения) и противоположного числа (для сложения).
Вполне упорядоченное множество — линейно упорядоченное множество M такое, что в любом его непустом подмножестве есть минимальный элемент, другими словами, это фундированное множество с линейным порядком.
Алгебра над полем — это векторное пространство, снабженное билинейным произведением. Это значит, что алгебра над полем является одновременно векторным пространством и кольцом, причём эти структуры согласованы. Обобщением этого понятия является алгебра над кольцом, которая, вообще говоря, является не векторным пространством, а модулем над некоторым кольцом.
Топологи́ческая гру́ппа (непрерывная группа) — это группа, которая одновременно является топологическим пространством, причём умножение элементов группы G × G → G и операция взятия обратного элемента G...
Элементарные функции — функции, которые можно получить с помощью конечного числа арифметических действий и композиций из следующих основных элементарных функций...
Математическая константа или математическая постоянная — величина, значение которой не меняется; в этом она противоположна переменной. В отличие от физических постоянных, математические постоянные определены независимо от каких бы то ни было физических измерений.
Аменабельная группа — локально компактная топологическая группа G, в которой возможно ввести операцию усреднения на ограниченных функциях на этой группе, инвариантную относительно умножения на любой элемент группы.
Метод итерации — численный метод решения математических задач, приближённый метод решения системы линейных алгебраических уравнений. Суть такого метода заключается в нахождении по приближённому значению величины следующего приближения (являющегося более точным).
Теорема Ласкера — Нётер утверждает, что каждый идеал нётерова кольца можно записать в виде конечного пересечения примарных идеалов. Такое представление идеала называется примарным разложением. В случае области главных идеалов это эквивалентно представлению в виде конечного пересечения (или произведения) степеней простых идеалов, то есть обобщает основную теорему арифметики. В 1905 теорема была доказана Эммануилом Ласкером в частном случае колец многочленов или сходящихся степенных рядов; общий случай...
В общей алгебре, термин кручение относится к элементам группы, имеющим конечный порядок, или к элементам модуля, аннулируемым регулярным элементом кольца.
Подробнее: Кручение (алгебра)
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
В математическом анализе, и прилегающих разделах математики, ограниченное множество — множество, которое в определенном смысле имеет конечный размер. Базовым является понятие ограниченности числового множества, которое обобщается на случай произвольного метрического пространства, а также на случай произвольного частично упорядоченного множества. Понятие ограниченности множества не имеет смысла в общих топологических пространствах, без метрики.
Подробнее: Ограниченное множество
Факторкольцо ́ — общеалгебраическая конструкция, позволяющая распространить на случай колец конструкцию факторгруппы. Любое кольцо является группой по сложению, поэтому можно рассмотреть её подгруппу и взять факторгруппу. Однако для того, чтобы на этой факторгруппе можно было корректно определить умножение, необходимо, чтобы исходная подгруппа была замкнута относительно умножения на произвольные элементы кольца, то есть являлась идеалом.
Бесконечная группа — группа с бесконечным числом элементов, в противоположность конечным группам.
Евклидово кольцо — общеалгебраическое кольцо, в котором существует аналог алгоритма Евклида.
Единичный круг — круг радиуса 1 на евклидовой плоскости (рассматриваемый обычно на комплексной плоскости); «идиоматическая» область в комплексном анализе.
Мультииндекс (или мульти-индекс) — обобщение понятия целочисленного индекса до векторного индекса, которое нашло применение в различных областях математики, связанных с функциями многих переменных. Использование мультииндекса помогает упростить (записать более кратко) математические формулы.
В математике,
несократимая дробь (также приведённая дробь) — дробь, которую невозможно сократить. Иначе говоря, значение несократимой дроби не допускает более простое представление в виде дроби. В случае обыкновенных дробей «более простое» означает: с меньшим (но натуральным) знаменателем.
В компле́ксном анализе вы́четом заданного объекта (функции, формы) называется объект (число, форма или когомологический класс формы), характеризующий локальные свойства заданного.
Подробнее: Вычет (комплексный анализ)
Сепара́бельное пространство (от лат. separabilis — отделимый) — топологическое пространство, в котором можно выделить счётное всюду плотное подмножество.
Преде́л — одно из основных понятий математического анализа. Различают предел последовательности и предел функции.
Локально компактное пространство — топологическое пространство, у каждой точки которого существует открытая окрестность, замыкание которой компактно. Иногда используется более слабое определение: достаточно чтобы каждая точка имела компактную окрестность (открытость окрестности здесь не предполагается). В случае хаусдорфова пространства эти определения эквивалентны.
Формальное дифференцирование — операция над элементами кольца многочленов или кольцом формальных степенных рядов, повторяющая форму производных из математического анализа. Алгебраическое преимущество формального дифференцирования состоит в том, что оно не опирается на понятие предела, которое в общем случае невозможно определить для кольца. Многие свойства производной верны для формального дифференцирования, но некоторые, особенно касающиеся утверждений, содержащих числа, не верны. В основном формальное...