Связанные понятия
Свёртка последовательностей — это результат перемножения элементов двух заданных числовых последовательностей таким образом, что члены одной последовательности берутся с возрастанием индексов, а члены другой — с убыванием (что и служит основанием для принятого названия данной операции).
Разделение секрета (англ. Secret sharing) — термин в криптографии, под которым понимают любой из способов распределения секрета среди группы участников, каждому из которых достаётся своя некая доля. Секрет может воссоздать только коалиция участников из первоначальной группы, причём входить в коалицию должно не менее некоторого изначально известного их числа.
Матрица жёсткости (матрица Дирихле) — матрица особого вида, использующаяся в методе конечных элементов для решения дифференциальных уравнений в частных производных. Она применяется при решениях задач электродинамики и механики.
Задача о самом широком пути — это задача нахождения пути между двумя выбранными вершинами во взвешенном графе, максимизирующего вес минимального по весу ребра графа (если рассматривать вес ребра как ширину дороги, то задача стоит в выборе самой широкой дороги, связывающей две вершины). Задача о самом широком пути известна также как задача об узком месте или задача о пути с максимальной пропускной способностью. Можно приспособить алгоритмы кратчайшего пути для вычисления пропускной способности путём...
Криптосистема Уильямса (Williams System) — система шифрования с открытым ключом, созданная Хью Коуи Уильямсом (Hugh Cowie Williams) в 1984 году.
Однородные координаты ―
система координат , используемая в проективной геометрии, подобно тому, как декартовы координаты используются в евклидовой геометрии.
Метод Стронгина — метод решения одномерных задач условной липшицевой оптимизации. Позволяет находить глобально оптимальное решение в задачах с ограничениями неравенствами при условии, что целевая функция задачи и левые части неравенств удовлетворяют условию Липшица в области поиска.
Множество больших тригонометрических сумм — понятие теории чисел — множество индексов, в которых преобразование Фурье характеристической функции заданного подмножества группы принимает достаточно большие значения.
Задача о наименьшей окружности или задача о минимальном покрывающем круге — задача о вычислении наименьшей окружности, содержащей все заданные точки из множества на евклидовой плоскости.
Схема шифрования GGH (англ. Goldreich–Goldwasser–Halevi) — асимметричная криптографическая система, основанная на решётках. Также существует схема подписи GGH.
Алгоритм Гаусса — Ньютона используется для решения задач нелинейным методом наименьших квадратов. Алгоритм является модификацией метода Ньютона для нахождения минимума функции. В отличие от метода Ньютона, алгоритм Гаусса — Ньютона может быть использован только для минимизации суммы квадратов, но его преимущество в том, что метод не требует вычисления вторых производных, что может оказаться существенной трудностью.
Нейронные сети Кохонена — класс нейронных сетей, основным элементом которых является слой Кохонена. Слой Кохонена состоит из адаптивных линейных сумматоров («линейных формальных нейронов»). Как правило, выходные сигналы слоя Кохонена обрабатываются по правилу «Победитель получает всё»: наибольший сигнал превращается в единичный, остальные обращаются в ноль.
Основная теорема о рекуррентных соотношениях (англ. Master theorem) используется в анализе алгоритмов для получения асимптотической оценки рекурсивных соотношений (рекуррентных уравнений), часто возникающих при анализе алгоритмов типа «разделяй и властвуй» (divide and conquer), например, при оценке времени их выполнения. Теорема была популяризована в книге Алгоритмы: построение и анализ (Томас Кормен, Чарльз Лейзерстон, Рональд Ривест, Клиффорд Штайн), в которой она была введена и доказана.
Интегра́л Пуассо́на — общее название математических формул, выражающих решение краевой задачи или начальной задачи для уравнений с частными производными некоторых типов.
Алгоритм Гельфонда — Шенкса (англ. Baby-step giant-step; также называемый алгоритмом больших и малых шагов) — в теории групп детерминированный алгоритм дискретного логарифмирования в мульпликативной группе кольца вычетов по модулю простого числа. Был предложен советским математиком Александром Гельфондом в 1962 году и Дэниэлем Шенксом в 1972 году.
Касательное пространство Зарисского — конструкция в алгебраической геометрии, позволяющая построить касательное пространство в точке алгебраического многообразия. Эта конструкция использует не методы дифференциальной геометрии, а только методы общей, и, в более конкретных ситуациях, линейной алгебры.
Итеративное сжатие — это алгоритмическая техника разработки фиксированно-параметрически разрешимых алгоритмов, в которой один элемент (такой как вершина графа) добавляется в задачу на каждом шаге и используется небольшое решение задачи перед добавлением элемента, чтобы найти небольшое решение задачи после добавления.
Генерация столбцов или отложенная генерация столбцов — это эффективный подход к решению больших задач линейного программирования.
Поточный алгоритм (англ. streaming algorithm) — алгоритм для обработки последовательности данных в один или малое число проходов.
Универса́льное хеши́рование (англ. Universal hashing) — это вид хеширования, при котором используется не одна конкретная хеш-функция, а происходит выбор из заданного семейства по случайному алгоритму. Такой подход обеспечивает равномерное хеширование: для очередного ключа вероятности помещения его в любую ячейку совпадают. Известно несколько семейств универсальных хеш-функций, которые имеют многочисленные применения в информатике, в частности в хеш-таблицах, вероятностных алгоритмах и криптографии...
В комбинаторной оптимизации под линейной задачей о назначениях на узкие места (linear bottleneck assignment problem, LBAP) понимается задача, похожая на задачу о назначениях.
Подробнее: Линейная задача о назначениях в узких местах
Алгоритм Грэхема — алгоритм построения выпуклой оболочки в двумерном пространстве.
Предобуславливание (также предобусловливание) — процесс преобразования условий задачи для её более корректного численного решения. Предобуславливание обычно связано с уменьшением числа обусловленности задачи. Предобуславливаемая задача обычно затем решается итерационным методом.
В вычислительной математике одной из наиболее важных задач является создание эффективных и устойчивых алгоритмов нахождения собственных значений матрицы. Эти алгоритмы вычисления собственных значений могут также находить собственные векторы.
Подробнее: Алгоритм вычисления собственных значений
Бесконечная группа — группа с бесконечным числом элементов, в противоположность конечным группам.
Куб Фибоначчи можно определить в терминах кодов Фибоначчи и расстояния Хэмминга, независимых множеств вершин в путях, или через дистрибутивные решётки.
Многоме́рное норма́льное распределе́ние (или многоме́рное га́уссовское распределе́ние) в теории вероятностей — это обобщение одномерного нормального распределения. Случайный вектор, имеющий многомерное нормальное распределение, называется гауссовским вектором.
Теорема Крамера об алгебраических кривых даёт необходимое и достаточное условия, при которых число точек на вещественной плоскости, принадлежащие алгебраической кривой, однозначно определяют кривую в невырожденных случаях. Это число равно...
Рациональное решето — это алгоритм общего вида для разложения целых чисел на простые множители. Алгоритм является частным случаем общего метода решета числового поля. Хотя он менее эффективен, чем общий алгоритм, концептуально он проще. Алгоритм может помочь понять, как работает общий метод решета числового поля.
В прикладной статистике метод наименьших полных квадратов (МНПК, TLS — англ. Total Least Squares) — это вид регрессии с ошибками в переменных, техника моделирования данных с помощью метода наименьших квадратов, в которой принимаются во внимание ошибки как в зависимых, так и в независимых переменных. Метод является обобщением регрессии Деминга и ортогональной регрессии и может быть применён как к линейным, так и нелинейным моделям.
Техники спектральной кластеризации используют спектр (собственные значения) матрицы сходства данных для осуществления понижения размерности перед кластеризацией в пространствах меньших размерностей. Матрица сходства подаётся в качестве входа и состоит из количественных оценок относительной схожести каждой пары точек в данных.
Подробнее: Спектральная кластеризация
Спектральные методы — это класс техник, используемых в прикладной математике для численного решения некоторых дифференциальных уравнений, возможно, вовлекая Быстрое преобразование Фурье. Идея заключается в переписи решения дифференциальных уравнений как суммы некоторых «базисных функций» (например, как ряды Фурье являются суммой синусоид), а затем выбрать коэффициенты в сумме, чтобы удовлетворить дифференциальному уравнению, насколько это возможно.
Подробнее: Спектральный метод
Сдвиг среднего значения — это непараметрическая техника анализа пространства признаков для определения местоположения максимума плотности вероятности, так называемый алгоритм поиска моды. Область применения техники — кластерный анализ в компьютерном зрении и обработке изображений.
Трилатерация (от лат. trilaterus — трёхсторонний) — метод определения положения геодезических пунктов путём построения на местности системы смежных треугольников, в которых измеряются длины их сторон.
Кусочно-линейная функция — функция, определённая на множестве вещественных чисел, линейная на каждом из интервалов, составляющих область определения.
Алгоритм Левенберга — Марквардта — метод оптимизации, направленный на решение задач о наименьших квадратах. Является альтернативой методу Ньютона. Может рассматриваться как комбинация последнего с методом градиентного спуска или как метод доверительных областей. Алгоритм был сформулирован независимо Левенбергом (1944) и Марквардтом (1963).
Алгоритм Баума — Велша используется в информатике и статистике для нахождения неизвестных параметров скрытой марковской модели (HMM). Он использует алгоритм прямого-обратного хода и является частным случаем обобщённого EM-алгоритма.
Диаграмма Вороного конечного множества точек S на плоскости представляет такое разбиение плоскости, при котором каждая область этого разбиения образует множество точек, более близких к одному из элементов множества S, чем к любому другому элементу множества.
Геометрический центр дискретного множества точек евклидова пространства (говоря статистическим языком — выборки) — это точка, в которой минимизируется сумма расстояний до точек множества. Геометрический центр обобщает медиану в математической статистике, которая минимизирует расстояния в одномерной выборке данных. Таким образом, геометрический центр отражает центральную тенденцию в пространствах высокой размерности. Понятие известно также по названиям 1-медиана , пространственная медиана, или точка...
Транспортная задача (задача Монжа — Канторовича) — математическая задача линейного программирования специального вида.
Дерево Фенвика (двоичное индексированное дерево, англ. Fenwick tree, binary indexed tree, BIT) — структура данных, позволяющая быстро изменять значения в массиве и находить некоторые функции от элементов массива. Впервые описано Питером Фенвиком в 1994 году. Дерево Фенвика напоминает дерево отрезков, однако проще в реализации.
Скорость сходимости является основной характеристикой численных методов решения уравнений и оптимизации.
Весовая функция — математическая конструкция, используемая при проведении суммирования, интегрирования или усреднения с целью придания некоторым элементам большего веса в результирующем значении по сравнению с другими элементами. Задача часто возникает в статистике и математическом анализе, тесно связана с теорией меры. Весовые функции могут быть использованы как для дискретных, так и для непрерывных величин.
Центра́льное многообра́зие особой точки автономного обыкновенного дифференциального уравнения — инвариантное многообразие в фазовом пространстве, проходящее через особую точку и касающееся инвариантного центрального подпространства линеаризации дифференциального уравнения. Важный объект изучения теории дифференциальных уравнений и динамических систем. В некотором смысле, вся нетривиальная динамика системы в окрестности особой точки сосредоточена на центральном многообразии.